NON-INVOLUTORIAL SPACE TRANSFORMATIONS ASSOCIATED WITH A $Q_{1,2}$ CONGRUENCE

A. B. CUNNINGHAM

De Paolis ${ }^{1}$ discussed the involutorial transformations associated with the congruence of lines meeting a curve of order m and an ($m-1$)-fold secant, while Vogt ${ }^{2}$ studied the transformation T for a linear congruence and bundle of lines. In the present paper the transformations associated with the congruence of lines on a conic and a secant of it are discussed.

Given a conic r, a line s meeting r once, and two projective pencils of surfaces

$$
\left|F_{n+m+1}\right|: r^{n} s^{m} g ; \quad\left|F_{n^{\prime}+m^{\prime}+1}^{\prime}\right|: r^{n^{\prime}} s^{m^{\prime}} g^{\prime}
$$

where $n \leqq m+1, n^{\prime} \leqq m^{\prime}+1,[r, s]=A$, and g, g^{\prime} the residual base curves.

Through a generic point P, there passes a single surface F of $|F|$. The unique line t through P, r, s meets the associated F^{\prime} in one residual point P^{\prime}, image (T) of P. The transformations to be considered are of three types:

Case I. $n=m+1, n^{\prime}=m^{\prime}+1$.
Case II. $n<m+1, n^{\prime}<m^{\prime}+1$.
Case III. $n=m+1, n^{\prime}<m^{\prime}+1$.

Case I

Given

$$
\left|F_{2 n}\right|: \quad r^{n} s^{n-1} g ; \quad\left|F_{2 n^{\prime}}^{\prime}\right|: \quad r^{n^{\prime}} s^{n^{\prime}-1} g^{\prime} ;
$$

where g, g^{\prime} are of order $n^{2}+2 n-1, n^{\prime 2}+2 n^{\prime}-1$. The curve g meets r, s in $n^{2}+2 n-1, n^{2}-1$ points respectively.

The conic r is a fundamental curve whose image (T^{-1}) is $R: r^{n+n^{\prime}}$, since there are $\left(n+n^{\prime}\right)$ invariant directions through each point on r. R is generated by a monoidal plane curve of order $n+n^{\prime}+1$, one curve on each plane of the pencil $\left(O_{r} s\right)=w$, as O_{r} describes r. The fundamental line s has for image $\left(T^{-1}\right)$ a surface $S: s^{n+n^{\prime}-1}$, of which $n+n^{\prime}-2$ branches are invariant. A is a fundamental point of the first kind, whose image $\left(T^{-1}\right)$ is the plane $u: r$. In the plane $v: s$ and tangent

[^0]
[^0]: ${ }_{6}^{1}$ De Paolis, Alcuni particolari trasformazioni involutori dello spazio, Rendiconti dell' Accademia dei Lincei, Rome, (4), vol. 1 (1885), pp. 735-742, 754-758.
 ${ }^{2}$ Vogt, Zentrale und windschiefe Raum-Verwandtschaften, Jahresbericht der Schlesischen Gesellschaft für Vaterländische Kultur, class 84, 1906, pp. 8-16.

