COMMENTS ON CANONICAL LINES

R. B. RASMUSEN AND B. L. HAGEN

1. Introduction. In this paper we propose to find the equations of the canonical edges of Green using a conjugate net as the parametric net of an analytic surface; to give a new interpretation to the line called by Davis the associate line of collineation; and, finally, to make a generalization of the canonical quadric of Davis.
2. Analytic basis. Let the projective homogeneous coordinates x^{1}, \cdots, x^{4} of a point P_{x} on a surface S in ordinary space be analytic functions of two independent variables u, v. In the notation ${ }^{1}$ of Lane if the parametric curves on S form a conjugate net, the coordinates x of the point P_{x} and the coordinates y of a point which is the harmonic conjugate of the point P_{x} with respect to the foci of the axis of the point P_{x}, satisfy a system of equations of the form

$$
\begin{align*}
& x_{u u}=p x+\alpha x_{u}+L y, \\
& x_{u v}=c x+a x_{u}+b x_{v}, \tag{1}\\
& x_{v v}=q x+\delta x_{v}+N y, \quad L N \neq 0 .
\end{align*}
$$

The ray-points of the net at the point P_{x} are given by the formulas

$$
x_{-1}=x_{u}-b x, \quad x_{1}=x_{v}-a x .
$$

Some of the invariants of the net are

$$
\begin{align*}
H & =c+a b-a_{u}, & & K=c+a b-b_{v}, \\
\mathfrak{S} & =c+a b+b_{v}-\delta_{u}, & & \Re=c+a b+a_{u}-\alpha_{v}, \\
8 \mathfrak{B}^{\prime} & =4 a-2 \delta+(\log r)_{v}, & & r=N / L, \tag{2}\\
8 \mathfrak{C}^{\prime} & =4 b-2 \alpha-(\log r)_{u} . & &
\end{align*}
$$

If the covariant tetrahedron, x, x_{1}, x_{-1}, y is used as the local tetrahedron of reference, a power series expansion ${ }^{2}$ for one nonhomogeneous coordinate z of a point on the surface in terms of the other two coordinates x, y is

$$
\begin{align*}
z= & \frac{1}{2}\left(L x^{2}+N y^{2}\right)+\frac{4}{3}\left(L \mathbb{C}^{\prime} x^{3}+N \mathfrak{B} y^{3}\right)+c_{0} x^{4} \tag{3}\\
& +4 c_{1} x^{3} y+4 c_{3} x y^{3}+c_{4} y^{4}+\cdots,
\end{align*}
$$

[^0]
[^0]: ${ }^{1}$ Lane, Conjugate nets and the lines of curvature, American Journal of Mathematics, vol. 53 (1931), p. 574.
 ${ }^{2}$ Lane, A canonical power series expansion for a surface, Transactions of this Society, vol. 37 (1935), p. 481.

