ELEMENTARY PROOF OF A THEOREM ON LORENTZ MATRICES

E. R. VAN KAMPEN

Let x and y be real n- and m-vectors and x^2 , y^2 the scalar squares of x, y. The corresponding Lorentz matrices are matrices of (n+m)dimensional real linear transformations which leave the quadratic form $x^2 - y^2$ invariant. Let the transformation be written in the form

(1)
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Ax + By \\ Cx + Dy \end{pmatrix}.$$

Then the signs of the determinants |A| and |D| form two 1-dimensional representations of the Lorentz group. Two algebraic proofs at present available for this fact¹ depend on a recursive factorization of the Lorentz matrix into simple factors or on deeper facts from the theory of representations. On the other hand, a simple topological proof may be given in quite an obvious manner. In this note the topological proof is briefly sketched and then a simple algebraic proof is given which does not depend on recursive factorization or representation theory and is valid in any real field.

The set defined by $x^2 - y^2 \ge 1$ in the real (n+m)-dimensional space possesses one basic (n-1)-dimensional (finite) cycle Γ which can most easily be represented by the (n-1)-dimensional basic cycle of the (n-1)-dimensional sphere $x^2 = 1$, y = 0. Now Γ is transformed by (1) into a cycle homologous to $+\Gamma$ or to $-\Gamma$ according as |A| is positive or negative. The formal proofs of these topological facts are obtained most easily from the remark that the whole space $x^2 - y^2 \ge 1$ can be retracted into its subset $x^2 = 1$, y = 0 by a deformation which does not change the value of $x/(x^2)^{1/2}$ for any point. That sign |A| is a one-dimensional representation of the Lorentz group is of course evident from the fact that Γ is transformed by (1) into a cycle homologous to $sign |A| \cdot \Gamma$. The statement concerning the signature of |D|depends on a similar consideration for the set defined by $x^2 - y^2 \le -1$.

Now let the elements of the matrix in (1) belong to any real field. Let the unit matrices of dimensions n and m be denoted by E_n and E_m . The fact that the matrix in (1) is a Lorentz matrix may be expressed by the relations:

¹ Cf. W. Givens, *Factorization and signatures of Lorentz matrices*, this Bulletin, vol. 46 (1940), pp. 81-85, where other references are given. My thanks are due to Dr. Murnaghan who drew my attention to the above theorem.