ELEMENTARY PROOF OF A THEOREM ON LORENTZ MATRICES

E. R. VAN KAMPEN

Let x and y be real n - and m-vectors and x^{2}, y^{2} the scalar squares of x, y. The corresponding Lorentz matrices are matrices of $(n+m)$ dimensional real linear transformations which leave the quadratic form $x^{2}-y^{2}$ invariant. Let the transformation be written in the form

$$
\left(\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right)\binom{x}{y}=\binom{A x+B y}{C x+D y} .
$$

Then the signs of the determinants $|A|$ and $|D|$ form two 1-dimensional representations of the Lorentz group. Two algebraic proofs at present available for this fact ${ }^{1}$ depend on a recursive factorization of the Lorentz matrix into simple factors or on deeper facts from the theory of representations. On the other hand, a simple topological proof may be given in quite an obvious manner. In this note the topological proof is briefly sketched and then a simple algebraic proof is given which does not depend on recursive factorization or representation theory and is valid in any real field.

The set defined by $x^{2}-y^{2} \geqq 1$ in the real $(n+m)$-dimensional space possesses one basic ($n-1$)-dimensional (finite) cycle Γ which can most easily be represented by the ($n-1$)-dimensional basic cycle of the ($n-1$)-dimensional sphere $x^{2}=1, y=0$. Now Γ is transformed by (1) into a cycle homologous to $+\Gamma$ or to $-\Gamma$ according as $|A|$ is positive or negative. The formal proofs of these topological facts are obtained most easily from the remark that the whole space $x^{2}-y^{2} \geqq 1$ can be retracted into its subset $x^{2}=1, y=0$ by a deformation which does not change the value of $x /\left(x^{2}\right)^{1 / 2}$ for any point. That $\operatorname{sign}|A|$ is a one-dimensional representation of the Lorentz group is of course evident from the fact that Γ is transformed by (1) into a cycle homologous to sign $|A| \cdot \Gamma$. The statement concerning the signature of $|D|$ depends on a similar consideration for the set defined by $x^{2}-y^{2} \leqq-1$.

Now let the elements of the matrix in (1) belong to any real field. Let the unit matrices of dimensions n and m be denoted by E_{n} and E_{m}. The fact that the matrix in (1) is a Lorentz matrix may be expressed by the relations:

[^0]
[^0]: ${ }^{1}$ Cf. W. Givens, Factorization and signatures of Lorentz matrices, this Bulletin, vol. 46 (1940), pp. 81-85, where other references are given. My thanks are due to Dr. Murnaghan who drew my attention to the above theorem.

