and by the lemma and (18) for sufficiently large n

$$
\begin{aligned}
\Delta & \leqq \frac{\epsilon}{2 c_{1}} c_{1}+\sum_{1 \leqq n \leqq n,\left|\theta-\theta_{k}^{(n)}\right|>\delta} \frac{1}{2} 2 M\left|l_{k}[\theta-\pi / 2 n]+l_{k}[\theta+\pi / 2 n]\right| \\
& <\epsilon / 2+M O(1 / n)<\epsilon,
\end{aligned}
$$

where $M=\max _{-1 \leqq x \leqq+1}|f(x)|$, and this proves our theorem.
Budapest, Hungary

DISCONTINUOUS CONVEX SOLUTIONS OF DIFFERENCE EQUATIONS ${ }^{1}$

FRITZ JOHN

This paper contains some conditions for continuity of convex solutions of a difference equation.

A function $f(x)$ defined for $a \leqq x \leqq b$ is convex, if

$$
\begin{equation*}
\left(\frac{x+y}{2}\right) \leqq \frac{f(x)+f(y)}{2} . \tag{1}
\end{equation*}
$$

If $f(x)$ is convex and bounded from above in $a \leqq x \leqq b$, then $f(x)$ is continuous (see Bernstein [1, p. 422]). ${ }^{2}$ If $f(x)$ is convex in $a \leqq x \leqq b$ and y a fixed number with $a<y<b$, let the function $\phi_{y}(x)$ be defined by

$$
\phi_{y}(x)=\lim _{\alpha \rightarrow x-y} f(y+\alpha)
$$

where α assumes rational values only. Then $\phi_{y}(x)$ is uniquely defined, continuous, and convex for $a<x<b$ (F. Bernstein [1, p. 431, Theorem 7]) ; moreover $\phi_{y}(x)=f(x)$ for rational $y-x$.

Theorem 1. If there exists at most one continuous convex solution of the difference equation

$$
\begin{equation*}
F(x, f(x), f(x+1), \cdots, f(x+n))=g(x), \quad x>0 \tag{2}
\end{equation*}
$$

where F and g are continuous functions of their arguments, then there exist no discontinuous convex solutions.

Proof. If $f(x)$ is a convex solution, then, for $x-y$ rational,

$$
F\left(x, \phi_{y}(x), \phi_{y}(x+1), \cdots, \phi_{y}(x+n)\right)=g(x) ;
$$

[^0]
[^0]: ${ }^{1}$ Presented to the Society, September 12, 1940.
 ${ }^{2}$ The numbers in brackets refer to the bibliography.

