SPACE CREMONA TRANSFORMATIONS OF ORDER $m+n-1^{1}$

EDWIN J. PURCELL

1. Introduction. This paper discusses a space Cremona transformation of order $m+n-1$ (m, n any integers) generated by two rational twisted curves. One special position of the defining curves gives rise to an involution recently described, ${ }^{2}$ while another special position results in an involution somewhat similar to one which was defined in a different manner by Montesano. ${ }^{3}$
2. Cremona transformation. Consider a curve C_{n} of order n having $n-1$ points on each of two skew lines d and d^{\prime}, and a curve $C_{m}{ }^{\prime}$ of order m having $m-1$ points on each of d and $d^{\prime}(m, n$, any integers). A generic point P determines a ray through it intersecting C_{n} once in α and d once in $\beta . P$ also determines a ray through it intersecting $C_{m}{ }^{\prime}$ once in γ and d once in δ. We define P^{\prime}, the correspondent of P, to be the intersection of lines $\alpha \delta$ and $\beta \gamma$.

It is to be noted that if C_{n} should become identical with $C_{m}{ }^{\prime}$ but d and d^{\prime} remain distinct, there would result the Cremona involution we discussed in a recent paper (loc. cit.).

Let the equations of d be $x_{1}=0, x_{2}=0$, and those of d^{\prime} be $x_{3}=0$, $x_{4}=0$. Let C_{n} be

$$
\begin{array}{ll}
x_{1}=(a s+b t) \prod_{1}^{n-1}\left(t_{i} s-s_{i} t\right), & x_{2}=(c s+d t) \prod_{1}^{n-1}\left(t_{i} s-s_{i} t\right) \\
x_{3}=(e s+f t) \prod_{n}^{2 n-2}\left(t_{i} s-s_{i} t\right), & x_{4}=(g s+h t) \prod_{n}^{2 n-2}\left(t_{i} s-s_{i} t\right)
\end{array}
$$

where s_{i}, t_{i} for $i=1,2, \cdots, n-1$ are values of the parameters of C_{n} for points on d, and for $i=n, n+1, \cdots, 2 n-2$, for points on d^{\prime}.

Let the equations of $C_{m}{ }^{\prime}$ be

$$
\begin{aligned}
& x_{1}=(A S+B T) \prod_{1}^{m-1}\left(T_{i} S-S_{i} T\right), \quad x_{2}=(C S+D T) \prod_{1}^{m-1}\left(T_{i} S-S_{i} T\right), \\
& x_{3}=(E S+F T) \prod_{m}^{2 m-2}\left(T_{i} S-S_{i} T\right), \quad x_{4}=(G S+H T) \prod_{m}^{2 m-2}\left(T_{i} S-S_{i} T\right)
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Presented to the Society, September 10, 1940.
 ${ }^{2}$ E. J. Purcell, A multiple null-correspondence and a space Cremona involution of order $2 n-1$, this Bulletin, vol. 46 (1940), pp. 339-444.
 ${ }^{3}$ D. Montesano, Su una classe di trasformazioni involutorie dello spazio, Rendiconti del' Istituto Lombardo di Scienze e Lettere, (2), vol. 21 (1888), pp. 688-690.

