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1. Introduction. The cue for the title to this address is taken from 
that of one by Pierpont before the Nashville meeting of this Society 
several years ago.2 This is typical of a number of expository treat­
ments of this topic which have been presented to the mathematical 
public in recent years.3 In the present paper I shall discuss the same 
theme in a somewhat different manner. Relying upon these expository 
addresses for the historical background, I propose to treat certain 
aspects of the subject which have been rather neglected in them. The 
discussion is frankly from a single point of view, which is a species of 
formalism. I shall try, in the first place, to explain the fundamental 
concepts of formalism, and, in the second place, to add some new sug­
gestions and criticisms in matters of detail.4 

The problem of mathematical rigor is that of giving an objective 
definition of a rigorous proof. If you will examine your ideas on this 
subject I think you will agree that there is something vague and sub­
jective about them. This does not mean, of course, that they are un­
satisfactory for the needs of working mathematicians. In daily life, 
when we say that a piece of cloth is a yard wide, we really mean that 
its width is a certain legally defined fraction of the distance between 
two scratches on a metal bar located in Paris ; nevertheless we do not 
rush to Paris when we wish to verify that a piece of cloth has this 
property. Secondary standards of varying degrees of accuracy suffice 
for the needs of daily life and of science ; but neither science nor busi­
ness would be possible without exact primary standards. Even so we 
need a primary standard of rigor in mathematics. The definition of 
such a standard, and the elaboration of practical secondary standards 
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4 For views related to those here presented, see my paper Remarks on the definition 
and nature of mathematics, Journal of Unified Science, vol. 9, pp. 164-169. This is an 
abstract of an address delivered before the Fifth International Congress of Unified 
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