ON A RESULT OF HUA FOR CUBIC POLYNOMIALS ${ }^{1}$

ALVIN SUGAR

In a paper by L. K. Hua, ${ }^{2}$ we find the following principal result.
Theorem. For any positive integer ϵ, every integer can be expressed in infinitely many ways as a sum of seven values of the cubic function

$$
f(x)=\epsilon\left(x^{3}-x\right) / 6+x
$$

for integral values of x;also, every integer can be expressed in infinitely many ways as a sum of seven values of

$$
F(x)=\left(x^{3}-x\right) / 6
$$

for integral values of $x .^{3}$
In this paper we get a better result by applying a known identity for cubes to generalizations of the above polynomials. We state our results in the following two theorems. Note that, in Theorem 1, ϵ may be positive or negative, or, for that matter, zero.

Unless otherwise stated all letters in this paper stand for integers, positive, negative, or zero.

Theorem 1. For any ϵ, c, and any k prime to ϵ, every integer can be expressed in infinitely many ways as a sum of five values of the function

$$
p(x)=\epsilon\left(x^{3}-x\right) / 6+k x+c
$$

for integral values of x.
Theorem 2. For any k and c, every integer can be expressed as a sum of four values of the function

$$
P(x)=\left(x^{3}-x\right) / 6+k x+c
$$

for integral values of x.
Theorem 1 is trivially true when $\epsilon=0$. For, in this case, $(\epsilon, k)=1$ implies $k=1$. Henceforth we take $\epsilon \neq 0$.

[^0]
[^0]: ${ }^{1}$ Presented to the Society, April 27, 1940.
 ${ }^{2}$ On the representation of integers by the sums of seven cubic functions, Tôhoku Mathematical Journal, vol. 41 (1935-1936), pp. 361-366.
 ${ }^{3}$ Hua fails to mention in his formulation of this theorem whether his ϵ may take negative values. It seems that Hua implicitly assumed ϵ positive, as was noted by Pall in his review of the Hua paper in the Zentralblatt für Mathematik, vol. 14, p. 10. (This assumption was probably unnecessary, however.)

