ON REGULAR FAMILIES OF CURVES ${ }^{1}$

HASSLER WHITNEY

A family F of non-intersecting curves filling a metric space is called regular if, in a neighborhood of any point p, it is homeomorphic with a family of straight lines. We have given in another paper ${ }^{2}$ a necessary and sufficient condition, which we shall call (A^{\prime}) (to be described below), that a family F be regular. We shall prove in this note that the following condition is sufficient:
(A) Given any point p, and a direction on the curve through p, there is an arc $p q$ in this direction with the following property. For every $\epsilon>0$ there is a $\delta>0$ such that for any p^{\prime}, with $\rho\left(p^{\prime}, p\right)<\delta$, there is an arc $p^{\prime} q^{\prime}$ of $C\left(p^{\prime}\right)$ such that

$$
\begin{equation*}
p^{\prime} q^{\prime} \subset V_{\epsilon}(p q), \quad q^{\prime} \subset V_{\epsilon}(q) \tag{1}
\end{equation*}
$$

The condition (A^{\prime}) is the same, except that after (1), we add:
(2) If r^{\prime} and s^{\prime} are on $p^{\prime} q^{\prime}$ and $\rho\left(r^{\prime}, s^{\prime}\right)<\delta$, then $\delta\left(r^{\prime} s^{\prime}\right)<\epsilon$.

From the present theorem it is clear that the families of curves recently defined by Niemitzki ${ }^{3}$ are regular.

To prove the theorem, suppose (A) holds, but (A^{\prime}) does not. Then the following is true:
(B) There is a point p, and a direction of the curve $C(p)$, such that for any arc $p q$ on $C(p)$ in this direction, there is an $\epsilon>0$, such that for any $\delta>0$, there is a point p^{\prime}, with $\rho\left(p^{\prime}, p\right)<\delta$, such that for any q^{\prime} on $C\left(p^{\prime}\right)$,
(3) either $p^{\prime} q^{\prime} \mp V_{\epsilon}(p q)$, or $q^{\prime} \mp V_{\epsilon}(q)$,

[^0]
[^0]: ${ }^{1}$ Presented to the Society, April 27, 1940.
 ${ }^{2}$ Annals of Mathematics, (2), vol. 34 (1933), pp. 244-270. We refer to this paper as RF. By RF, Theorem 7A, F is regular as there defined. The converse is proved as follows. By Theorem 17A, there is a cross-section S through p. In a neighborhood of p, the curves are orientable (this is easily seen, for instance, with the help of Theorem 9B). Choose an open subset S^{\prime} of S, and let U be all points $q^{\prime}=g^{\prime}(q, \alpha), q$ in $S^{\prime},|\alpha|<\epsilon$ (see RF, §15); U is a neighborhood of p, expressed as the product of S^{\prime} and the open line segment $-\epsilon<\alpha<\epsilon$.

 By a curve, we shall mean here the topological image of an open line segment or of a circle. We shall use $\rho(p, q)$ for distance, $\delta(A)$ for the diameter of the set A, and $V_{\epsilon}(A)$ for the set of all points $p, \rho(p, A)<\epsilon$. Let $C(p)$ mean the curve of F through p.
 ${ }^{3}$ V. Niemytzki, Recueil Mathématique de Moscou, vol. 6 (48) (1939), pp. 283-292. We mention two further papers in the subject: H. Whitney, Duke Mathematical Journal, vol. 4 (1938), pp. 222-226, showing that if the curves fill a region in 3-space, a cross-section may be chosen so as to be a 2-cell; W. Kaplan, Duke Mathematical Journal, vol. 7 (1940), pp. 154-185, studying families filling the plane.

