A NOTE ON A THEOREM OF RADÓ CONCERNING THE (1, m) CONFORMAL MAPS OF A MULTIPLY-CONNECTED REGION INTO ITSELF¹

MAURICE H. HEINS

Let G_z denote a region in the z-plane and let w = f(z) be a function of z defined for $z \subset G_z$ which has the following properties: (1) w = f(z)is analytic and single-valued for $z \subset G_z$, (2) $z \subset G_z$ implies that $f(z) \subset G_z$, (3) to each point $w_0 \subset G_z$ there correspond m and only m points $z_0^{(k)}$ $(k = 1, 2, \dots, m)$ contained in G_z such that $f(z_0^{(k)}) = w_0$ $(k = 1, 2, \dots, m)$ where following the usual convention we count the $z_0^{(k)}$ according to their multiplicities. Then w = f(z) is said to define a (1, m) conformal map of G_z onto itself. Such maps have been studied by Fatou² and Julia³ for the case where G_z is simply-connected, and by Radó⁴ who treated multiply-connected regions as well. Among the results which Radó established is the following theorem:

Let G_z be a region of finite connectivity p(>1); then there exists no (1, m) conformal map of G_z onto itself for m > 1.

Let us remark with Radó that the theorem is no longer valid if G_z is of infinite connectivity, as simple examples from the theory of the iteration of rational functions show.⁵ Radó's proof of the theorem just cited is based on the possibility of mapping one-to-one and conformally a region of finite connectivity p, none of the components of its boundary reducing to points, onto a region of connectivity p, the boundary of which consists of p disjoint circles. Other types of canonical regions yield the same result, notably one due to Koebe.⁶ It is the object of the present note to establish Radó's theorem directly without appeal to the possibility of mapping one-to-one and conformally the region G_z onto a canonical region. Our tools are the theory of iteration and a simple modification of Nevanlinna's principle of harmonic measure.⁷

Let G_z , the region we are going to study, have as its boundary p (>1) disjoint continua Γ_k $(k=1, 2, \dots, p)$. It is evident that we

¹ Presented to the Society, April 27, 1940, under the title A note on a theorem of Radó.

² P. Fatou, Bulletin de la Société Mathématique de France, 1919.

³ G. Julia, Comptes Rendus de l'Académie des Sciences, Paris, vol. 166 (1918).

⁴ T. Radó, Acta Szeged, vol. 1 (1922).

⁵ G. Julia, Journal de Mathématiques Pures et Appliquées, 1918.

⁶ P. Koebe, Acta Mathematica, vol. 41.

⁷ R. Nevanlinna, Eindeutige analytische Funktionen, chap. 3.