LINEAR FORMS IN FUNCTION FIELDS¹

LEONARD TORNHEIM

We shall prove algebraically an analogue for function fields² of a well known theorem of Minkowski on linear forms.³

THEOREM 1. Let F be a field and z an indeterminate over F. Let

(1)
$$L_i = \sum_{j=1}^n a_{ij} x_j, \qquad i = 1, \cdots, n,$$

be n linear expressions with coefficients a_{ij} in F(z) and with the determinant $|a_{ij}|$ of degree⁴ d. Then for any set of n integers c_1, \dots, c_n which satisfy the condition $\sum_{i=1}^{n} c_i > d-n$ there exists a set of values for x_1, \dots, x_n in F[z] and not all zero such that each L_i has degree at most c_i .

First, we may assume that all of the c_i are equal. For, suppose that c is the maximum of the c_i . Write L'_i for $L_i z^{c-c_i}$. The determinant of the coefficients of the L'_i has degree $d' = d + \sum (c-c_i) < \sum c+n$. If there is a set of values for x_1, \dots, x_n with the property that the degree of each L'_i is at most c, then these same values will make the degree of L_i at most c_i .

Next, we may assume, after multiplying each L_i by a suitable polynomial and by using an argument similar to that above, that all the a_{ij} are in F[z].

We shall now convert our system of L_i by means of a transformation of determinant unity with elements in F[z] into an equivalent system having $a_{ij}=0$ for i < j. Let b_1 be the g.c.d. of the a_{1j} ; then $b_1=\sum_{j=1}^n a_{1j}c_{j1}$ for appropriate c_{j1} in F[z]. Necessarily the c_{j1} are relatively prime. It is possible to find other quantities c_{jk} $(k=2, \dots, n)$ such that the determinant $|c_{jk}|$ has value unity.⁵ Thus the transfor-

⁴ The degree of a rational function is the degree of the numerator less that of the denominator. Zero is assigned the degree minus infinity.

⁵ A. A. Albert, Normalized integral bases of algebraic number fields I, Annals of Mathematics, (2), vol. 38 (1937), p. 926 ff. The statement is proved for rational integral c_{ik} but the proof applies to any integral domain having the property that a

¹ Presented to the Society, April 13, 1940.

² See M. Deuring, Zur Theorie der Idealklassen in algebraischen Funktionenkörpern, Mathematische Annalen, vol. 106 (1932), pp. 103–106, for a related result. I believe the results I prove are new.

⁸ A bibliography of both analytic and algebraic proofs of the theorem of Minkowski on linear forms is given by E. Jacobsthal, *Der Minkowskische Linearformensatz*, Sitzungsberichte Berliner mathematischen Gesellschaft, vol. 33 (1934), pp. 62–64. See also L. J. Mordell, *Minkowski's theorem on homogeneous linear forms*, Journal of the London Mathematical Society, vol. 8 (1933), pp. 179–192.