AN ADDITIONAL CRITERION FOR THE FIRST CASE OF FERMAT'S LAST THEOREM ${ }^{1}$

BARKLEY ROSSER

In an earlier paper ${ }^{2}$ it was shown that if p is an odd prime and

$$
a^{p}+b^{p}+c^{p}=0
$$

has a solution in integers prime to p, then

$$
m^{p-1} \equiv 1\left(\bmod p^{2}\right)
$$

for each prime $m \leqq 41$. In this paper the result is extended to $m \leqq 43$.
We will use the notations and conventions of I throughout, and a reference to a numbered equation will refer to the equation of that number in I. With p assumed to be an odd prime such that (1) has a solution in integers prime to p, we assume that a t exists such that the values of (2) satisfy (4), (5), and (6) with $m=43$. Put $g(x)=f(x) f(-x)$ and

$$
h(x)=\left(x^{42}-1\right) /\left(x^{6}-1\right)
$$

Then $g(x)$ divides $h(x)$, and $g(x)$ can be completely factored modulo p.
Case 1. Assume that a root of $g(x)$ is a root of

$$
h(x) /\left(x^{12}+x^{10}+x^{8}+x^{6}+x^{4}+x^{2}+1\right)
$$

Then this root belongs to either the exponent 21 or the exponent 42 $\operatorname{modulo} p$. Hence $p \equiv 1(\bmod 42)$. So there is an ω such that

$$
\omega^{2}+\omega+1 \equiv 0 .
$$

Then $g(x), g(\omega x)$, and $g\left(\omega^{2} x\right)$ all divide $h(x)$. Moreover, the only cases in which two of $g(x), g(\omega x)$, and $g\left(\omega^{2} x\right)$ have a common factor are
I. $a^{6}+1 \equiv 0$,
II. $a^{6}+a^{3}+3 a^{2}+3 a+1 \equiv 0$,
III. $a^{6}-a^{3}-3 a^{2}-3 a-1 \equiv 0$,
or cases derived from these by replacing a by one of the other roots of $f(x)$. So if we show that $h(x)$ has no factor in common with any of $x^{6}+1, x^{6}+x^{3}+3 x^{2}+3 x+1$, or $x^{6}-x^{3}-3 x^{2}-3 x-1$, then we can conclude that $g(x) g(\omega x) g\left(\omega^{2} x\right)$ must divide $h(x)$.

Clearly $h(x)$ has no factor in common with $x^{6}+1$.

[^0]
[^0]: ${ }^{1}$ Presented to the Society, April 27, 1940.
 ${ }^{2}$ A new lower bound for the exponent in the first case of Fermat's last theorem, this Bulletin, vol. 46 (1940), pp. 299-304. This paper will be referred to as I.

