THE GENERALIZATION OF A LEMMA OF M. S. KAKEYA

J. GERONIMUS

We shall prove the following:
Lemma. It is always possible to find the unique polynomial

$$
\phi^{*}(z)=\sum_{k=0}^{2 s} \gamma_{k}^{*} z^{k}
$$

of degree $2 s$ possessing the following properties:
I.

$$
\phi^{*}(z)=c i^{2}(z) \tau(z) \tau^{*}(z), \quad c=\text { const. }
$$

the polynomial $i(z)$ of degree $\sigma \leqq$ shaving all roots in the domain $|z|>1$:

$$
i(z)=\prod_{i=1}^{\sigma}\left(z-a_{i}\right), \quad\left|a_{i}\right|>1, \quad i=1,2, \cdots, \sigma
$$

and the polynomial $\tau(z)$ being of degree $\nu=s-\sigma$:

$$
\tau(z)=\prod_{i=1}^{\nu}\left(z-\alpha_{i}\right), \quad \tau^{*}(z)=z^{\nu} \bar{\tau}\left(\frac{1}{z}\right)=\prod_{i=1}^{\nu}\left(1-z \bar{\alpha}_{i}\right) .
$$

II. It is subject to the conditions

$$
\omega_{i}\left(\phi^{*}\right)=\sum_{k=0}^{2 s} \gamma_{k}^{*} c_{k}^{(i)}=d_{i}, \quad i=0,1, \cdots, s,
$$

the given linear functionals ω_{i} being such that every polynomial $\phi(z)$ of degree $n \geqq 2$ s for which

$$
\omega_{i}(\phi)=\sum_{k=0}^{2 s} \gamma_{k} c_{k}^{(i)}=0, \quad(i=0,1, \cdots, s), \quad \phi(z)=\sum_{k=0}^{n} \gamma_{k} z^{k},
$$

has $s+1$ roots at least in the domain $|z|<1$.
In the particular case when

$$
\omega_{i}(\phi)=\phi^{(i)}\left(z_{k}\right), \quad\left|z_{k}\right|<1,
$$

this lemma has been proved by M. S. Kakeya [1]; ${ }^{1}$ without being aware of his result we have proved this lemma in the case ${ }^{2}$

[^0]
[^0]: ${ }^{1}$ Numbers in brackets refer to the bibliography at the end.
 ${ }^{2}$ In [1] and [2] one may find the application of this lemma to some extremal problems.

