FOURIER COEFFICIENTS OF BOUNDED FUNCTIONS¹

BERNARD FRIEDMAN

The results of this paper are divided into two parts. First: inequalities for the Fourier coefficients of any bounded function; second: an approximation theorem for the Fourier development of an arbitrary bounded function.

Inequalities for Fourier coefficients have been discussed in a paper by Professor Szász.² However, his work deals mainly with linear inequalities for complex coefficients. The inequalities to be investigated in this paper are not linear. Nevertheless, they are the best possible, for this reason: given any set of numbers which makes the inequality an equality, there exists a bounded function which has these numbers as its Fourier coefficients.

A simple illustration will clarify this. Let f(x) be a bounded measurable function in $(-\pi, \pi)$ such that $|f(x)| \leq 1$. The Fourier coefficients of f(x) are given by the formulae

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx,$$
$$n = 1, 2, 3, \cdots$$

Then, it is clear that

$$|a_{n}| \leq \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)| |\cos nx| dx \leq \frac{1}{\pi} \int_{-\pi}^{\pi} |\cos nx| dx,$$

$$|b_{n}| \leq \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)| |\sin nx| dx \leq \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin nx| dx$$

since $|f(x)| \leq 1$.

Since the cosine is negative in the intervals $(-\pi, -\pi/2)$ and $(\pi/2, \pi)$ and positive in the remaining interval $(-\pi/2, \pi/2)$,

$$\int_{-\pi}^{\pi} |\cos x| \, dx = \int_{-\pi}^{-\pi/2} (-\cos x) dx + \int_{-\pi/2}^{\pi/2} \cos x \, dx + \int_{\pi/2}^{\pi/2} (-\cos x) dx = 4.$$

Therefore, $|a_1| \leq 4/\pi$. However, if $f_1(x) = -1$, $-\pi < x < -\pi/2$; $f_1(x)$

¹ Presented to the Society, September 8, 1939.

² American Journal of Mathematics, vol. 61 (1939).