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The results of this paper are divided into two parts. First: inequali­
ties for the Fourier coefficients of any bounded function ; second : an 
approximation theorem for the Fourier development of an arbitrary 
bounded function. 

Inequalities for Fourier coefficients have been discussed in a paper 
by Professor Szâsz.2 However, his work deals mainly with linear in­
equalities for complex coefficients. The inequalities to be investigated 
in this paper are not linear. Nevertheless, they are the best possible, 
for this reason : given any set of numbers which makes the inequality 
an equality, there exists a bounded function which has these numbers 
as its Fourier coefficients. 

A simple illustration will clarify this. Let f(x) be a bounded meas­
urable function in ( — x, w) such that \f(x)\ g l . The Fourier coeffi­
cients of ƒ(x) are given by the formulae 
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an — — I f(x) cos nx dx, bn = — I f(x) sin nx dx, 

n = 1, 2, 3, 

Then, it is clear that 
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since \f(x)\ ^ 1 . 
Since the cosine is negative in the intervals (— 7r, — X / 2 ) and 

(7r/2, X) and positive in the remaining interval (— 7r/2, 7T/2), 
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Therefore, | a i | ^4/7r. However, if/i(#) = — 1, —7r<x< — 7r/2; fi(x) 

1 Presented to the Society, September 8, 1939. 
2 American Journal of Mathematics, vol, 61 (1939). 
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