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The results of this paper are divided into two parts. First: inequali-
ties for the Fourier coefficients of any bounded function; second: an
approximation theorem for the Fourier development of an arbitrary
bounded function.

Inequalities for Fourier coefficients have been discussed in a paper
by Professor Szdsz.? However, his work deals mainly with linear in-
equalities for complex coefficients. The inequalities to be investigated
in this paper are not linear. Nevertheless, they are the best possible,
for this reason: given any set of numbers which makes the inequality
an equality, there exists a bounded function which has these numbers
as its Fourier coefficients.

A simple illustration will clarify this. Let f(x) be a bounded meas-
urable function in (—m, 7) such that |f(x)| =1. The Fourier coeffi-
cients of f(x) are given by the formulae
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since !f(x)l <1.

Since the cosine is negative in the intervals (—w, —m/2) and
(w/2, ) and positive in the remaining interval (—w/2, 7/2),

Then, it is clear that
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Therefore, ]a1| =4/w. However, if fi(x)=—1, —r<x<—7/2; fi(x)
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