The max $|l_1^{(n)}(x)|$ is attained at $x = \pm 1$ since⁴ (I) $\theta_{k+1} - \theta_k$ $\leq 2\pi/(2n+\alpha+\beta-1)$ provided $\frac{1}{2}\leq \alpha, \beta \leq \frac{3}{2}$ and $x_k = \cos \theta_k$. Using the second asymptotic formula and the fact⁴ that $n\theta_k \rightarrow j_k$ as $n \rightarrow \infty$ where j_k is the kth positive zero of $J_{\beta-1}(x)$, we find that

$$
|l_k^{(n)}(1)| \to \left(\frac{1}{2}j_k\right)^{\beta-2} |\Gamma(\beta)J_\beta(j_k)|^{-1} \quad \text{as } n \to \infty, k \text{ constant,}
$$

 $l_1^{(n)}(-1) \rightarrow 0$ which proves the theorem:

THEOREM 7. Max $|l_1^{(n)}(x)| \rightarrow (\frac{1}{2}j_1)^{\beta-2} |\Gamma(\beta) J_{\beta}(j_1)|^{-1}$ as $n \rightarrow \infty$ (where $\frac{1}{2} \le \alpha$, $\beta \le \frac{3}{2}$, j_1 is first positive zero of $J_{\beta-1}(x)$.

A similar result holds for $l_n^{(n)}(x)$ if β is replaced by α .

For Legendre polynomials $(\alpha = \beta = 1)$ this limit is approximately 1.602. For $\alpha = \beta = \frac{1}{2}$ and $\alpha = \beta = \frac{3}{2}$ the limit of Theorem 7 is also an upper bound for max $|l_1^{(n)}(x)|$ and max $|l_k^{(n)}(x)|$. Whether this is true, in general, remains unanswered.

PURDUE UNIVERSITY

AN INVARIANCE THEOREM FOR SUBSETS OF *Sn 1*

SAMUEL EILENBERG

The purpose of this paper is to establish the following.

INVARIANCE THEOREM. *Let A and B be two homeomorphic subsets of the n-sphere* $Sⁿ$ *. If the number of components of* $Sⁿ - A$ *is finite, then it is equal to the number of components of* $Sⁿ - B$.

In the case when *A* and *B* are closed this theorem is a very well known consequence of Alexander's duality theorem and its generalizations. In our case we also derive our result as a consequence of a duality theorem. However, the duality is established only for the dimension $n-1$.

Given a metric space X we shall say that Γ^k is a k-cycle in X if there is a compact subset A of X such that Γ^k is a k-dimensional convergent (Vietoris) cycle in *A* with coefficients modulo 2. We shall write Γ^k \sim 0 if Γ^k \sim 0 holds in some compact subset of X. The homology group of X obtained this way will be denoted by $\mathcal{R}^k(X)$; the corresponding connectivity number, by $p^k(X)$. The number $p^k(X)$ can be either finite or ∞ .

¹ Presented to the Society, December 28, 1939.