The max $|l_1^{(n)}(x)|$ is attained at $x = \pm 1$ since⁴ (I) $\theta_{k+1} - \theta_k \leq 2\pi/(2n+\alpha+\beta-1)$ provided $\frac{1}{2} \leq \alpha$, $\beta \leq \frac{3}{2}$ and $x_k \equiv \cos \theta_k$. Using the second asymptotic formula and the fact⁴ that $n\theta_k \rightarrow j_k$ as $n \rightarrow \infty$ where j_k is the *k*th positive zero of $J_{\beta-1}(x)$, we find that

$$\left| \ l_k^{(n)}(1) \ \right|
ightarrow \left(rac{1}{2} j_k
ight)^{eta - 2} \left| \ \Gamma(eta) J_eta(j_k) \ \right|^{-1}$$
 as $n
ightarrow \infty$, k constant,

 $l_1^{(n)}(-1) \rightarrow 0$ which proves the theorem:

THEOREM 7. Max $|I_1^{(n)}(x)| \rightarrow (\frac{1}{2}j_1)^{\beta-2} |\Gamma(\beta)J_{\beta}(j_1)|^{-1}$ as $n \rightarrow \infty$ (where $\frac{1}{2} \leq \alpha, \beta \leq \frac{3}{2}, j_1$ is first positive zero of $J_{\beta-1}(x)$).

A similar result holds for $l_n^{(n)}(x)$ if β is replaced by α .

For Legendre polynomials $(\alpha = \beta = 1)$ this limit is approximately 1.602. For $\alpha = \beta = \frac{1}{2}$ and $\alpha = \beta = \frac{3}{2}$ the limit of Theorem 7 is also an upper bound for max $|l_1^{(n)}(x)|$ and max $|l_k^{(n)}(x)|$. Whether this is true, in general, remains unanswered.

PURDUE UNIVERSITY

AN INVARIANCE THEOREM FOR SUBSETS OF S^{n1}

SAMUEL EILENBERG

The purpose of this paper is to establish the following.

INVARIANCE THEOREM. Let A and B be two homeomorphic subsets of the n-sphere S^n . If the number of components of $S^n - A$ is finite, then it is equal to the number of components of $S^n - B$.

In the case when A and B are closed this theorem is a very well known consequence of Alexander's duality theorem and its generalizations. In our case we also derive our result as a consequence of a duality theorem. However, the duality is established only for the dimension n-1.

Given a metric space X we shall say that Γ^k is a k-cycle in X if there is a compact subset A of X such that Γ^k is a k-dimensional convergent (Vietoris) cycle in A with coefficients modulo 2. We shall write $\Gamma^k \sim 0$ if $\Gamma^k \sim 0$ holds in some compact subset of X. The homology group of X obtained this way will be denoted by $\mathfrak{SC}^k(X)$; the corresponding connectivity number, by $p^k(X)$. The number $p^k(X)$ can be either finite or ∞ .

1941]

¹ Presented to the Society, December 28, 1939.