ON UNCONDITIONAL CONVERGENCE IN NORMED VECTOR SPACES

T. H. HILDEBRANDT

Suppose X is a complete normed vector or Banach space of elements x. Orlicz¹ has given the following two definitions of unconditional convergence of an infinite series $\sum_n x_n$ of elements from X and proved their equivalence:

A. $\sum_{n} x_n$ is unconditionally convergent if and only if any rearrangement of the series is convergent.

B. $\sum x_n$ is unconditionally convergent if and only if $\sum_k x_{n_k}$ converges, where $\{x_{n_k}\}$ is any subsequence of $\{x_n\}$.

Pettis² has shown that either of these conditions is equivalent to the statement:

C. Every subseries of $\sum_n x_n$ is weakly convergent to an element of X, that is, $\{x_{n_k}\}$ implies the existence of an element x_{σ} such that, for every \bar{x} of the conjugate space \overline{X} , $\sum_k \bar{x}(x_{n_k}) = \bar{x}(x_{\sigma})$.

In proving this equivalence, he shows that condition C implies the following:

D. $\lim_{m \to \infty} \sum_{m=n}^{\infty} \bar{x}(x_m) = 0$ uniformly for $||\bar{x}|| = 1$.

E. H. Moore³ has shown that for real, complex or quaternionic numbers, absolute and therefore unconditional convergence is equivalent to the following definition of convergence:

Let σ be any finite subset n_1, \dots, n_k of the positive integers, and denote $\sum_{i=1}^k x_{n_i}$ by $\sum_{\sigma} x_n$. Then

E. $\sum x_n$ converges in the σ -sense, if $\lim_{\sigma} \sum_{\sigma} x_n$ exists, where the limit is the Moore-Smith limit, and $\sigma_1 \ge \sigma_2$ means that σ_1 contains all of the numbers in σ_2 .⁴

Obviously the Moore-Smith limit can be extended to normed vector spaces, and the fundamental properties carry over. It is the purpose of this note to show that convergence in the σ -sense is equivalent to each of the conditions A, B, and D, that is, A, B, D and E are equivalent definitions of unconditional convergence, to which the

¹ Ueber unbedingte Konvergenz in Funktionenräumen, Studia Mathematica, vol. 4 (1933), pp. 33–38.

² Integration in vector spaces, Transactions of this Society, vol. 44 (1938), pp. 281–282.

⁸ General Analysis, Memoirs of the American Philosophical Society, vol. 1, part 2, 1939, p. 63.

⁴ See Alaoglu, Annals of Mathematics, (2), vol. 41 (1940), p. 259, where a similar definition for weak unconditional convergence is given.