NOTE ON SOME ELEMENTARY PROPERTIES OF POLYNOMIALS

P. ERDÖS

In a previous paper T. Grünwald ${ }^{1}$ and I proved that if $f(x)$ is a polynomial of degree $n \geqq 2$ and satisfies the following conditions:

$$
\begin{align*}
& \text { all roots of } f(x) \text { are real, } f(-1)=f(+1)=0 \tag{1}\\
& f(x) \neq 0 \text { for }-1<x<1, \quad \max _{-1<x<1} f(x)=1
\end{align*}
$$

then

$$
\begin{equation*}
\int_{-1}^{+1} f(x) \leqq \frac{4}{3} \tag{2}
\end{equation*}
$$

Equality occurs only for $f(x)=1-x^{2}$.
This result can be generalized as follows: Suppose $f(x)$ satisfies (1) and let $f(a)=f(b)=d \leqq 1,-1<a<b<1$; then

$$
\begin{equation*}
b-a \leqq 2(1-d)^{1 / 2} \tag{3}
\end{equation*}
$$

Again equality occurs only for $f(x)=1-x^{2}$. It is clear that (2) follows from (3) by integration with respect to d.

Proof. Instead of (3) we prove the following slightly more general result: Let $f(x)$ satisfy (1), and determine the greatest positive constant c_{f} such that

$$
f(a) f\left(a+c_{f}\right)=d^{2}, \quad-1<a<a+c_{f}<1
$$

then

$$
\begin{equation*}
c_{f} \leqq 2(1-d)^{1 / 2} \tag{4}
\end{equation*}
$$

Equality holds only for $f(x)=1-x^{2}, a=-(1-d)^{1 / 2}$.
Suppose there exists a polynomial of degree $n>2$ satisfying (1) with $c_{f} \geqq 2(1-d)^{1 / 2}$; then we will prove that there exists a polynomial of degree $n-1$ with $c_{f}>2(1-d)^{1 / 2}$; and this proves (4) since it is easy to prove that (4) is satisfied for polynomials of second degree, that is, for $1-x^{2}$.

Denote the roots of $f(x)$ by $x_{1}=-1, x_{2}=1, x_{3}, \cdots, x_{n}$ and suppose first that for $i>2$ the x_{i} are not all of the same sign. Let x_{n} be the largest positive root and x_{n-1} the smallest negative root, and denote by y the root of $f^{\prime}(x)$ in $(-1,+1)$. Consider the polynomial of degree n

[^0]
[^0]: ${ }^{1}$ Annals of Mathematics, (2), vol. 40 (1939), pp. 537-548.

