NOTE ON SOME ELEMENTARY PROPERTIES OF POLYNOMIALS

P. ERDÖS

In a previous paper T. Grünwald¹ and I proved that if f(x) is a polynomial of degree $n \ge 2$ and satisfies the following conditions:

(1) all roots of
$$f(x)$$
 are real, $f(-1) = f(+1) = 0$,
 $f(x) \neq 0$ for $-1 < x < 1$, $\max_{-1 < x < 1} f(x) = 1$,

then

(2)
$$\int_{-1}^{+1} f(x) \leq \frac{4}{3}$$

Equality occurs only for $f(x) = 1 - x^2$.

This result can be generalized as follows: Suppose f(x) satisfies (1) and let $f(a) = f(b) = d \le 1$, -1 < a < b < 1; then

(3)
$$b-a \leq 2(1-d)^{1/2}$$
.

Again equality occurs only for $f(x) = 1 - x^2$. It is clear that (2) follows from (3) by integration with respect to d.

PROOF. Instead of (3) we prove the following slightly more general result: Let f(x) satisfy (1), and determine the greatest positive constant c_f such that

$$f(a)f(a + c_f) = d^2, -1 < a < a + c_f < 1;$$

then

(4)
$$c_f \leq 2(1-d)^{1/2}.$$

Equality holds only for $f(x) = 1 - x^2$, $a = -(1 - d)^{1/2}$.

Suppose there exists a polynomial of degree n > 2 satisfying (1) with $c_f \ge 2(1-d)^{1/2}$; then we will prove that there exists a polynomial of degree n-1 with $c_f > 2(1-d)^{1/2}$; and this proves (4) since it is easy to prove that (4) is satisfied for polynomials of second degree, that is, for $1-x^2$.

Denote the roots of f(x) by $x_1 = -1$, $x_2 = 1$, x_3 , \cdots , x_n and suppose first that for i > 2 the x_i are not all of the same sign. Let x_n be the largest positive root and x_{n-1} the smallest negative root, and denote by y the root of f'(x) in (-1, +1). Consider the polynomial of degree n

¹ Annals of Mathematics, (2), vol. 40 (1939), pp. 537-548.