ON TOPOLOGICAL COMPLETENESS¹

L. W. COHEN

Recently A. Weil² defined a uniform space as a set of points p such that for each α in a set A there is defined a set $U_{\alpha}(p) \subset S$, the class of sets $U_{\alpha}(p)$ satisfying the conditions:

I_A. $\prod_{\alpha} U_{\alpha}(p) = (p)$.

II_A. To each α , $\beta \in A$ there is a $\gamma = \gamma(\alpha, \beta) \in A$ such that $U_{\gamma}(p) \subset U_{\alpha}(p) U_{\beta}(p)$.

III_A. To each $\alpha \in A$ there is a $\beta(\alpha) \in A$ such that if $p', p'' \in U_{\beta(\alpha)}(q)$, then $p'' \in U_{\alpha}(p')$.

For the uniform space S, Weil introduced the concept of Cauchy family $\{M_{\beta}\}$ of sets. Such a family is defined by the conditions that the intersection of any finite number of sets of the family is nonempty and that to each $\alpha \in A$ there is a $p_{\alpha} \in S$ and a $\beta(\alpha)$ such that $M_{\beta(\alpha)} \subset U_{\alpha}(p_{\alpha})$. Weil gives a theory of completeness in these terms.

The writer has considered³ a space S of points p and neighborhoods $U_{\alpha}(p)$ where α is an element of a set A such that:

I. $\prod_{\alpha} U_{\alpha}(p) = (p).$

II. To each α and $\beta \in A$ and $p \in S$ there is a $\gamma = \gamma(\alpha, \beta; p)$ such that $U_{\gamma}(p) \subset U_{\alpha}(p) U_{\beta}(p)$.

III. To each $\alpha \in A$ and $p \in S$ there are $\lambda(\alpha)$, $\delta(p, \alpha) \in A$ such that, if $U_{\delta(p,\alpha)}(q) U_{\lambda(\alpha)}(p) \neq 0$, then $U_{\delta(p,\alpha)}(q) \subset U_{\alpha}(p)$.

The uniformity conditions here are lighter than those in II_A and III_A. A Cauchy sequence $p_n \in S$ was defined by the condition that for every $\alpha \in A$, n_{α} and $p_{\alpha} \in S$ exist such that $p_n \in U_{\alpha}(p_{\alpha})$ for $n \ge n_{\alpha}$. S is complete if every Cauchy sequence has a limit. It was shown that there is a complete space S* which contains a homeomorphic image of S such that the image of a Cauchy sequence in S is a convergent sequence in S*.

It is the object of this paper to show that Weil's space is a special case of the space $S_{I,II,III}$ and that the notion of Cauchy family in this space leads to the same theory of completeness as that previously developed.

THEOREM 1. If S satisfies III_A and $\beta^2(\alpha) = \beta(\beta(\alpha))$, then from $U_{\beta^2(\alpha)}(q) U_{\beta^2(\alpha)}(p) \neq 0$ follows $U_{\beta^2(\alpha)}(q) \subset U_{\alpha}(p)$.

¹ Presented to the Society, December 27, 1939.

² A. Weil, Sur les Espaces à Structure Uniforme, Paris, 1938.

⁸ L. W. Cohen, On imbedding a space in a complete space, Duke Mathematical Journal, vol. 5 (1939), pp. 174–183. Also Duke Mathematical Journal, vol. 3 (1937), pp. 610–617, where the notion of topological completeness is introduced.