# INVERSE PROBLEMS OF THE CALCULUS OF VARIATIONS FOR MULTIPLE INTEGRALS ${ }^{1}$ 

WILLIAM A. PATTERSON

1. Introduction. The simplest case of the inverse problem of Darboux is that in which an ordinary differential equation in the normal form $y^{\prime \prime}=\phi\left(x, y, y^{\prime}\right)$ is assigned with the requirement that we ascertain, first, under what conditions $\phi\left(x, y, y^{\prime}\right)$ is the solution for $y^{\prime \prime}$ of the Euler equation of a variation problem of the form $\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x$ $=\min$ and then that we determine the most general integrand function $f$ corresponding to an admissible function ${ }^{2} \phi\left(x, y, y^{\prime}\right)$.

For partial differential equations the simplest analogous problem is that of finding the most general first order multiple integral variation problem associated with an assigned partial differential equation, that is, the most general integrand function $f$ of a variation problem of the form

$$
\begin{equation*}
\int_{(n)} f\left(x_{1}, \cdots, x_{n}, z, p_{1}, \cdots, p_{n}\right) d x_{1} \cdots d x_{n}=\min , p_{i}=\partial z / \partial x_{i} \tag{I}
\end{equation*}
$$

of which the extremal hypersurfaces are the integral hypersurfaces $z=z\left(x_{1}, \cdots, x_{n}\right)$ of a prescribed partial differential equation.

A systematic study of such inverse problems of Darboux type for certain important classes of partial differential equations is made in this paper.
2. A uniqueness theorem. Consider a partial differential equation of the form

$$
\begin{align*}
F \equiv & A_{\alpha \beta}\left(x_{1}, \cdots, x_{n}, z, p_{1}, \cdots, p_{n}\right) p_{\alpha \beta}  \tag{2.1}\\
& +B\left(x_{1}, \cdots, x_{n}, z, p_{1}, \cdots, p_{n}\right)=0
\end{align*}
$$

where $p_{i j}=\partial^{2} z / \partial x_{i} \partial x_{j}$, and $A_{i j}=A_{j i}(i, j=1, \cdots, n)$ and $B$ are arbitrary analytic functions of $x_{1}, \cdots, x_{n}, z, p_{1}, \cdots, p_{n}$. In (2.1) as elsewhere in this paper, a repeated Greek letter is an umbral index indicating a summation with range 1 to $n$, unless otherwise indicated.

Equation (2.1), as it stands, may have an equation of variation which is self-adjoint on every hypersurface $z=z\left(x_{1}, \cdots, x_{n}\right)$. If so there is always a multiple integral of the form (I) having $F=0$ as its

[^0]
[^0]:    ${ }^{1}$ Presented to the Society, December 29, 1939.
    ${ }^{2}$ Cf. G. Darboux, Théorie des Surfaces, vol. 3, 1887, p. 53. For the case of $n \geqq 2$ dependent variables $y_{1}, \cdots, y_{n}$ see L. LaPaz, Proceedings of the National Academy of Sciences, vol. 17 (1931), pp. 459-463.

