NULLIFYING FUNCTIONS¹

F. J. MURRAY

Introduction. A function f(x) defined on the unit interval (0, 1) will be called nullifying if we can find a set S of (0, 1) for which m(S) = 1, $m(\{f(x); x \in S\}) = 0$. Examples of homeomorphisms which are nullifying and hence termed singular are well known.² We shall however consider simply the nullifying property itself.

If f(x) is nullifying and $\phi(x)$ is not, one might expect that $\phi(x) + f(x)$ shares with ϕ the property of being not nullifying. But this is not always true as the following example shows. Let $\alpha_1\alpha_2 \cdots$ denote the dyadic expansion for x, that is, $x = \alpha_1/2 + \alpha_2/2^2 + \cdots$ with $\alpha_i = 0$ or 1. Let $v_1(x) = .\alpha_10\alpha_30 \cdots$ and $v_2(x) = .0\alpha_20\alpha_4 \cdots$. It is easily verified that both v_1 and v_2 are nullifying. Hence $f(x) = 1 - v_1$ is also nullifying. Let $\phi = x$. Then $f + \phi = 1 - v_1 + x = 1 + v_2$ is also nullifying.

But this suggests the question: Does there exist a nullifying function f(x) such that $f(x) + \rho x$ is nullifying for every value of ρ ? We construct such a function in the present note.

Our method of proof can be summarized as follows. Considering the set $\{f(x) + \rho x; x \in (0, 1)\}$, we let $\rho = \cot \theta$. (Note $\theta \neq 0$.) If this set has measure zero, this will still be true if we multiply by $\sin \theta$ and conversely. Thus we may consider the sets $\{x \cos \theta + f(x) \sin \theta; x \in (0, 1)\}$ for each $\theta \neq 0$ between $-\pi/2$ and $\pi/2$. If we consider the line through the origin of inclination θ , we can assign a coordinate to each of its points in the usual manner with positive direction to the right or, in the case of the y axis, upwards. The set $\{x \cos \theta + f(x) \sin \theta; x \in (0, 1)\}$ is the set of coordinates of the projection onto this line of the graph of f(x). Thus it suffices to find a function f(x) which is such that the projection of its graph onto any line not parallel to the x axis is of measure zero. We proceed to find the graph of such a function by an intersection process on sets in the plane. This process is described in detail in what follows.

A more general question is: Given $F(x, y, \rho)$, under what circumstances can we find a function f(x) such that $F(x, f(x), \rho)$ is nullifying in x for every value of ρ ? It is comparatively easy to abstract the properties of $F=y+\rho x$ which are essential to the present discussion, and these will prove sufficient to obtain an answer to the question.

¹ Presented to the Society, December 29, 1939.

² Cf. E. R. van Kampen and Aurel Wintner, On a singular monotone function, Journal of the London Mathematical Society, vol. 12 (1937), pp. 243-244. References to preceding examples are given in this paper.