ON THE CONVERSE OF THE TRANSITIVITY OF MODULARITY

Y. K. WONG

E. H. Moore's theorem on the transitivity of modularity is as follows: Consider the basis ${ }^{1} \mathfrak{N}, \mathfrak{B}, \epsilon$; if a positive hermitian matrix ϵ_{0} is modular as to $\epsilon \epsilon$, then every vector which is modular as to ϵ_{0} is modular ${ }^{2}$ as to ϵ (that is, $\mathfrak{M}_{\epsilon_{0}} \subset \mathfrak{M}_{\epsilon}$).

In his doctoral thesis, the author establishes the converse of the preceding theorem as a consequence of the Hellinger-Toeplitz theorem. ${ }^{3}$ In this note, we give a new proof for the converse of the transitivity of modularity, and then deduce the generalized HellingerToeplitz theorem as a corollary. The converse of the transitivity of modularity is, therefore, equivalent to the Hellinger-Toeplitz theorem. We also establish the converse of the transitivity of modularity for matrices, and a theorem on the transitivity of accordance and finiteness.

Theorem I. Consider the basis $\mathfrak{N}, \mathfrak{B}, \boldsymbol{\epsilon}$; and let ϵ_{0} be a positive hermitian matrix. Then the following assertions are equivalent:
(1) every vector μ_{0} modular as to ϵ_{0} is modular as to ϵ;
(2) ϵ_{0} is modular as to $\epsilon \epsilon_{0}$;
(3) ϵ_{0} is modular as to $\epsilon \epsilon$.

If one of the preceding conditions is satisfied, the modulus of ϵ_{0} as to $\epsilon \epsilon$ is equal to the norm of ϵ_{0} as to $\boldsymbol{\epsilon} \boldsymbol{\epsilon}_{0}$.

In the course of demonstration, we let \mathfrak{M}_{0} denote the space of vectors μ_{0} modular as to $\epsilon_{0} ; J_{0}$, the integration process based on ϵ_{0}; and M_{0}, the modulus as to ϵ_{0}. Similar interpretations are given to the symbols \mathfrak{M}, J, M, for the base matrix ϵ. A vector which is finite as to ϵ is denoted by β.

If every μ_{0} is modular as to ϵ, the matrix ϵ_{0} is of type $\mathfrak{M}_{0} \bar{M}$. Then $J \epsilon_{0} \beta$ is in \mathfrak{M}_{0} for every β, and $J_{0}\left(J \bar{\beta} \epsilon_{0}\right) \mu_{0}=J \bar{\beta} J_{0} \epsilon_{0} \mu_{0}=J \bar{\beta} \mu_{0}$ for every pair β, μ_{0}. Consequently, for every $\beta, M_{0} J \epsilon_{0} \beta$ is equal to the least upper bound of $\left|J \bar{\beta} \mu_{0}\right|$ for all μ_{0} such that $M_{0} \mu_{0} \leqq 1$, by part (2) of Theorem (41.9) in G.A. Similarly, for every μ_{0}, which is modular as to ϵ by hypothesis, $M \mu_{0}$ is equal to the least upper bound of $\left|J \bar{\beta} \mu_{0}\right|$

[^0]
[^0]: ${ }^{1}$ E. H. Moore, General Analysis (G.A. for abbreviation), Part I, p. 4, and Part II, p. 84.
 ${ }^{2}$ Theorem (46.4), part (1) in G.A., II, p. 137.
 ${ }^{3}$ Spaces associated with non-modular matrices with applications to reciprocals, Chicago thesis, 1931, pp. 3-9. The same proof is given in G.A., II, p. 193.

