By Theorem 2, the solutions of the equation (17) are given by (16).
If $x_{i}=\rho_{i}, y_{k}=\sigma_{k}$ is any solution of (13) and we choose $\alpha_{i}=\rho_{i}, \mu_{k}=\sigma_{k}$, $\lambda=f(\rho)$, we have that $s=0$ and the solution becomes $x_{i}=\rho_{i} K^{n-1}$, $y_{k}=\sigma_{k} K^{n+1}$, where $K=A \lambda(A D-B C)$, which is equivalent to the given solution provided $K \neq 0$; that is, provided $x_{i}=\rho_{i}, y_{k}=\sigma_{k}$ is not a solution of (14). It will be noted that if $K \neq 0$, then $t \neq 0$.

Louisiana State University

A MULTIPLE NULL-CORRESPONDENCE AND A SPACE CREMONA INVOLUTION OF ORDER $2 n-1^{1}$

EDWIN J. PURCELL
Part I. A null-system ($1, m n, m+n$) between the planes AND POINTS OF SPACE ($m, n=1,2,3, \cdots$)

1. Introduction. Consider a curve δ_{m} of order m having $m-1$ points in common with a straight line d, and a curve $\delta_{n}{ }^{\prime}$ of order n having $n-1$ points in common with a straight line $d^{\prime},(m, n=1,2,3, \cdots)$. It is assumed for the present that neither δ_{m} nor d intersects either $\delta_{n}{ }^{\prime}$ or d^{\prime}.

In general, through any point P of space there passes one ray ρ which intersects δ_{m} once and d once, and one ray ρ^{\prime} which intersects $\delta_{n}{ }^{\prime}$ once and d^{\prime} once; ρ and ρ^{\prime} determine a plane π, the null-plane of P. Conversely, a plane π determines m rays ρ_{i} and n rays ρ_{i}^{\prime} lying in it which intersect, a ray ρ with a ray ρ^{\prime}, in $m n$ points, the null-points of the plane π.

Any point α in general position determines a ray ρ. As α describes a line l, the plane π of ρ and l contains n rays ρ^{\prime}, which intersect l in n points β; conversely, any point β on l determines a ray ρ^{\prime} which determines with l the plane π, and π contains m rays ρ which intersect l in m points α-one being the original α. Thus an (m, n) correspondence is set up among the points of l with valence zero; there are $m+n$ coincidences and therefore $m+n$ points on any line l whose nullplanes contain l.
2. Planes whose null-points behave peculiarly. We can obtain the last result by another method; this will yield additional information about planes whose null-points behave peculiarly.

Let a plane π turn about a line l as axis. A ruled surface will be generated by the m rays ρ_{i} lying in π. This surface is of order $m+1$; δ_{m} is a onefold curve on the surface and d is an m-fold line. Another

[^0]
[^0]: ${ }^{1}$ Presented to the Society, December 2, 1939.

