By Theorem 2, the solutions of the equation (17) are given by (16). If $x_i = \rho_i$, $y_k = \sigma_k$ is any solution of (13) and we choose $\alpha_i = \rho_i$, $\mu_k = \sigma_k$, $\lambda = f(\rho)$, we have that s = 0 and the solution becomes $x_i = \rho_i K^{n-1}$, $y_k = \sigma_k K^{n+1}$, where $K = A\lambda(AD - BC)$, which is equivalent to the given solution provided $K \neq 0$; that is, provided $x_i = \rho_i$, $y_k = \sigma_k$ is not a solution of (14). It will be noted that if $K \neq 0$, then $t \neq 0$.

LOUISIANA STATE UNIVERSITY

A MULTIPLE NULL-CORRESPONDENCE AND A SPACE CREMONA INVOLUTION OF ORDER $2n-1^1$

EDWIN J. PURCELL

Part I. A null-system (1, mn, m+n) between the planes and points of space $(m, n=1, 2, 3, \cdots)$

1. Introduction. Consider a curve δ_m of order m having m-1 points in common with a straight line d, and a curve δ'_n of order n having n-1 points in common with a straight line d', $(m, n=1, 2, 3, \cdots)$. It is assumed for the present that neither δ_m nor d intersects either δ'_n or d'.

In general, through any point P of space there passes one ray ρ which intersects δ_m once and d once, and one ray ρ' which intersects δ'_n once and d' once; ρ and ρ' determine a plane π , the null-plane of P. Conversely, a plane π determines m rays ρ_i and n rays ρ'_i lying in it which intersect, a ray ρ with a ray ρ' , in mn points, the null-points of the plane π .

Any point α in general position determines a ray ρ . As α describes a line l, the plane π of ρ and l contains n rays ρ' , which intersect l in npoints β ; conversely, any point β on l determines a ray ρ' which determines with l the plane π , and π contains m rays ρ which intersect lin m points α —one being the original α . Thus an (m, n) correspondence is set up among the points of l with valence zero; there are m+ncoincidences and therefore m+n points on any line l whose nullplanes contain l.

2. Planes whose null-points behave peculiarly. We can obtain the last result by another method; this will yield additional information about planes whose null-points behave peculiarly.

Let a plane π turn about a line l as axis. A ruled surface will be generated by the m rays ρ_i lying in π . This surface is of order m+1; δ_m is a onefold curve on the surface and d is an m-fold line. Another

¹ Presented to the Society, December 2, 1939.