A NEW LOWER BOUND FOR THE EXPONENT IN THE FIRST CASE OF FERMAT'S LAST THEOREM ${ }^{1}$

BARKLEY ROSSER

1. Introduction. In this paper is proved the theorem: If p is an odd prime and

$$
\begin{equation*}
a^{p}+b^{p}+c^{p}=0 \tag{1}
\end{equation*}
$$

has a solution in integers prime to p, then $p>41,000,000$.
It seems certain that still higher lower bounds for p can be deduced by the methods of this paper. However an argument is given which makes it seem unlikely that an indefinitely high lower bound can be so deduced.
2. Preliminary results. Unless otherwise specified, we shall assume that p is an odd prime for which (1) can be satisfied by integers prime to p. Hence ${ }^{2} p>8,000,000$. Also $x \equiv y$ shall denote $x \equiv y(\bmod p)$. Also any statement regarding factorization of a polynomial is to be understood modulo p.

Morishima has proved ${ }^{3}$ that for each odd prime $m \leqq 43$, there is a t ($t \neq 0, \neq 1$) such that each of the values

$$
\begin{equation*}
t, \frac{1}{t}, \quad 1-t, \frac{1}{1-t}, \frac{t-1}{t}, \frac{t}{t-1} \tag{2}
\end{equation*}
$$

satisfies each of the following relations when substituted for x :

$$
\begin{align*}
&\left\{\left(m^{p-1}-1\right) / p\right\}\left(x^{m-1}-1\right) \equiv 0 \tag{3}\\
& x^{4} \neq 1 \tag{4}\\
& x^{6} \neq 1 \tag{5}
\end{align*}
$$

Morishima further proved that for each odd prime $m \leqq 31$, there is no t such that the values in (2) satisfy (4), (5), and

$$
\begin{equation*}
x^{m-1} \equiv 1 \tag{6}
\end{equation*}
$$

Hence for such m 's, $\left(m^{p-1}-1\right) / p \equiv 0$. That is

$$
\begin{equation*}
m^{p-1} \equiv 1\left(\bmod p^{2}\right) . \tag{7}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Presented to the Society, September 8, 1939.
 ${ }^{2}$ Barkley Rosser, On the first case of Fermat's last theorem, this Bulletin, vol. 45 (1939), pp. 636-640. This paper will be referred to as I.
 ${ }^{3}$ Taro Morishima, Über den Fermatschen Quotienten, Japanese Journal of Mathematics, vol. 8 (1931), pp. 159-173.

