SOME PROBLEMS IN INTERPOLATION BY CHARACTER-ISTIC FUNCTIONS OF LINEAR DIFFERENTIAL SYSTEMS OF THE FOURTH ORDER

KATHARINE E. O'BRIEN

In this paper we consider the convergence to f(x), defined on [0, 1], of

$$\sum_{p} [f(x)] = \alpha_{0p} u_0(x) + \alpha_{1p} u_1(x) + \cdots + \alpha_{pp} u_p(x),$$

where $u_n(x)$, $(n=0, 1, \dots, p)$, are characteristic functions of certain self-adjoint linear differential systems of fourth order,

$$\alpha_{np} = \sum_{k=0}^{p} f(x_k) u_n(x_k) \left\{ \sum_{k=0}^{p} u_n^2(x_k) \right\}^{-1}, \qquad n = 0, 1, \dots, p,$$

and the symbol \sum' is used in the sense $\sum_{k=0}^{p} y_k = y_0/2 + \sum_{k=1}^{p} y_k$. Throughout the discussion, $x_k = 2k/(2p+1)$, $(k=0, 1, \dots, p)$. The differential systems considered are

$$u^{(iv)} - \rho^4 u = 0$$

with boundary conditions

I.
$$u'(0) = 0$$
, $u'''(0) = 0$, $u'(1) = 0$, $u'''(1) + u(1) = 0$,

II.
$$u'(0) = 0$$
, $u'''(0) = 0$, $u'(1) + u(1) = 0$, $u'''(1) + u''(1) = 0$,

III.
$$u(0) = 0$$
, $u''(0) = 0$, $u(1) = 0$, $u''(1) + u'(1) = 0$,

IV.
$$u'(0) = 0$$
, $u'''(0) = 0$, $u(1) = 0$, $u''(1) + u'(1) = 0$,

V.
$$u(0) = 0$$
, $u'(0) = 0$, $u(1) = 0$, $u'(1) = 0$,

VI.
$$u'(0) = 0$$
, $u'''(0) = 0$, $u(1) = 0$, $u'(1) = 0$.

The following theorems may be proved for these systems respectively.

- I, II. If f(x) is continuous and of bounded variation in [0, 1], then $\lim_{p\to\infty} \sum_p [f(x)] = f(x)$ uniformly in [0, 1].
- III. If f(x) is continuous and of bounded variation in [0, 1] and f(0) = f(1) = 0, then $\lim_{x \to \infty} \Sigma_x [f(x)] = f(x)$ uniformly in [0, 1].
- IV. If f(x) is continuous and of bounded variation in [0, 1] and f(1) = 0, then $\lim_{p\to\infty} \Sigma_p[f(x)] = f(x)$ uniformly in $[0, 1-\eta]$.
- V, VI. If f(x) satisfies a Lipschitz condition in [0, 1] and f(0) = f(1) = 0, then $\lim_{n\to\infty} \Sigma_n[f(x)] = f(x)$ uniformly in $[\eta, 1-\eta]$.

Here and hereafter $\eta > 0$ is arbitrarily small but fixed.

The method of proof for these theorems, as well as for those to fol-