ON THE COMPLETENESS OF A CERTAIN METRIC SPACE WITH AN APPLICATION TO BLASCHKE'S SELECTION THEOREM ${ }^{1}$

G. BALEY PRICE

1. Introduction. The purpose of this note is to prove that the metric space whose elements are the closed, bounded, non-null subsets of a complete metric space, and whose metric is the Hausdorff distance, is complete; and, using this result and others already known, to give a simple proof of Blaschke's selection theorem.
2. Preliminaries. Let K be a metric space with elements x, y, \cdots and distance function $d(x, y)$. A sequence x_{1}, x_{2}, \cdots in K such that $\sum_{1}^{\infty} d\left(x_{i}, x_{i+1}\right)$ converges has been called an absolutely convergent sequence by MacNeille ${ }^{2}$ [7, p. 192]. Every absolutely convergent sequence is a Cauchy sequence, and every Cauchy sequence contains absolutely convergent subsequences.

Let K^{*} be a metric space whose elements X, Y, \cdots are the closed, bounded, and non-null subsets of K, and whose distance function $D(X, Y)$ is the Hausdorff distance between the sets X and Y (see Hausdorff [5, pp. 145-146] and Kuratowski [6, pp. 89-90]).
3. The theorem. If K is complete, then K^{*} is also complete.

Let X_{1}, X_{2}, \cdots be any Cauchy sequence in K^{*}; without loss of generality we can assume that it is absolutely convergent. We shall define a set X and show that it is the limit of the given sequence. Let x_{1} be any point in X_{1}, x_{2} any point in X_{2} such that $d\left(x_{1}, x_{2}\right)<D\left(X_{1}, X_{2}\right)$ $+2^{-1}, x_{3}$ any point in X_{3} such that $d\left(x_{2}, x_{3}\right)<D\left(X_{2}, X_{3}\right)+2^{-2}$, and so on. The existence of points x_{2}, x_{3}, \cdots with the properties stated follows from the definition of the Hausdorff distance. Every point x_{i} in X_{i} is a member of a sequence x_{1}, x_{2}, \cdots of the kind described. The sequence x_{1}, x_{2}, \cdots is absolutely convergent and hence a Cauchy sequence; since K is complete, it has a limit x_{0} in K. Let X_{0} be the locus of all the points x_{0} obtained as the limits of all possible sequences formed in the manner stated; let X be the closure of X_{0}. Then X is closed, bounded, and non-null, and X is in K^{*}. We shall show that $\lim X_{k}=X$. Let any $\epsilon>0$ be given. Choose $n=n(\epsilon)$ so that $\sum_{n}^{\infty}\left[D\left(X_{i}, X_{i+1}\right)+2^{-i}\right]<\epsilon / 2$. Let $x^{*} \varepsilon X$, and let x_{0} be the limit of a

[^0]
[^0]: ${ }^{1}$ Presented to the Society, December 28, 1938, under the title Spaces whose elements are sets.
 ${ }^{2}$ Numbers in square brackets refer to the references at the end.

