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1. Introduction. The purpose of this note is to prove that the met
ric space whose elements are the closed, bounded, non-null subsets 
of a complete metric space, and whose metric is the Hausdorff dis
tance, is complete; and, using this result and others already known, 
to give a simple proof of Blaschke's selection theorem. 

2. Preliminaries. Let K be a metric space with elements x, y, • • • 
and distance function d(x, y). A sequence xi, x2, • • • in K such that 
^2T^(Xiy Xi+i) converges has been called an absolutely convergent se
quence by MacNeille2 [7, p. 192]. Every absolutely convergent se
quence is a Cauchy sequence, and every Cauchy sequence contains 
absolutely convergent subsequences. 

Let i£* be a metric space whose elements X, F, • • • are the closed, 
bounded, and non-null subsets of K, and whose distance function 
D(X, Y) is the Hausdorff distance between the sets X and Y (see 
Hausdorff [5, pp. 145-146] and Kuratowski [6, pp. 89-90]). 

3. The theorem. If K is complete, then i£* is also complete. 
Let Xi, X2, • • • be any Cauchy sequence in j£*; without loss of 

generality we can assume that it is absolutely convergent. We shall 
define a set X and show that it is the limit of the given sequence. Let 
Xi be any point in X±, x2 any point in X2 such that d(xi, x2) <D(Xx, X2) 
+ 2~1

1 xz any point in Xz such that d(x2l x$) <D(X2, Xz)+2~2, and 
so on. The existence of points x2, #3, • • • with the properties stated 
follows from the definition of the Hausdorff distance. Every point Xi 
in Xi is a member of a sequence xi, x2, • • • of the kind described. 
The sequence xi, x2, • • • is absolutely convergent and hence a Cauchy 
sequence; since K is complete, it has a limit xQ in K. Let XQ be the 
locus of all the points xQ obtained as the limits of all possible se
quences formed in the manner stated; let X be the closure of X0. 
Then X is closed, bounded, and non-null, and X is in if*. We shall 
show that lim Xk = X. Let any e > 0 be given. Choose n = n(e) so that 
2 » [D{Xiy Xi+x) +2-*] < e/2. Let ** t X, and let x0 be the limit of a 

1 Presented to the Society, December 28, 1938, under the title Spaces whose 
elements are sets. 

2 Numbers in square brackets refer to the references at the end. 
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