AN EXTENSION OF A COVARIANT DIFFERENTIATION PROCESS ${ }^{1}$

MARIE M. JOHNSON

Craig ${ }^{2}$ has considered tensors $T_{\beta}^{\alpha} \ldots .$. whose components are functions of n variables represented by x and their m derivatives $x^{\prime}, x^{\prime \prime}, \cdots, x^{(m)}$. He obtained the covariant derivative

$$
T_{\beta \cdots x^{(m-1) \gamma}}^{\alpha \cdots}-m T_{\beta \cdots x^{(m) \lambda}}^{\alpha \cdots}\left\{\begin{array}{l}
\lambda \tag{1}\\
\gamma
\end{array}\right\}, \quad m \geqq 2
$$

where

$$
\left\{\begin{array}{l}
\lambda \tag{2}\\
\gamma
\end{array}\right\} \equiv x^{\prime \alpha} \Gamma_{\gamma \alpha}^{\lambda}+(1 / 2) x^{\prime \prime \beta} f_{\gamma \delta \beta} f^{\delta \lambda},
$$

and partial differentiation in (1) is denoted by the added subscript. Throughout, a repeated letter in one term indicates a sum of n terms. The purpose of this note is to derive another tensor from $T_{\beta}^{\alpha \ldots . .}$ whose covariant rank is one larger. The general process will be shown clearly by using $T^{\alpha}\left(x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)$.

The extended point transformation

$$
\begin{aligned}
x^{\alpha} & =x^{\alpha}(y), \quad x^{\prime \alpha}=\frac{\partial x^{\alpha}}{\partial y^{i}} y^{\prime i} \\
x^{\prime \prime \alpha} & =\frac{\partial x^{\alpha}}{\partial y^{i}} y^{\prime \prime i}+\frac{\partial^{2} x^{\alpha}}{\partial y^{i} \partial y^{j}} y^{\prime i} y^{\prime j}, \cdots, \quad \alpha=1, \cdots, n
\end{aligned}
$$

gives the tensor equations of transformation of the tensor T^{α} as

$$
\begin{equation*}
\bar{T}^{i}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=T^{\alpha}\left(x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right) \partial y^{i} / \partial x^{\alpha} \tag{3}
\end{equation*}
$$

where y stands for the n variables $y^{1}, y^{2}, \cdots, y^{n}$ and a similar notation is used for the derivatives $y^{\prime}, y^{\prime \prime}$, and $y^{\prime \prime \prime}$. On differentiating equations (3) with respect to $y^{\prime k}$ it is found that

$$
\begin{equation*}
\bar{T}_{y^{\prime} k}^{i}=\left(T_{x^{\prime} \beta}^{\alpha} \frac{\partial x^{\beta}}{\partial y^{k}}+T_{x^{\prime \prime \beta}}^{\alpha} \frac{\partial x^{\prime \prime \beta}}{\partial y^{\prime k}}+T_{x^{\prime \prime \prime}, \beta}^{\alpha} \frac{\partial x^{\prime \prime \prime} \beta}{\partial y^{\prime k}}\right) \partial y^{i} / \partial x^{\alpha} \tag{4}
\end{equation*}
$$

The derivatives can be expressed by using the following general formulas:

[^0]
[^0]: ${ }^{1}$ Presented to the Society, April 15, 1939.
 ${ }^{2}$ H. V. Craig, On a covariant differentiation process, this Bulletin, vol. 37 (1931), pp. 731-734.

