A NOTE ON HERMITIAN FORMS ${ }^{1}$

N. JACOBSON

In this note we effect a reduction of the theory of hermitian forms of two particular types (coefficients in a quadratic field or in a quaternion algebra with the usual anti-automorphism) to that of quadratic forms. The main theorem (§2) enables us to apply directly the known results on quadratic forms. This is illustrated in the discussion in $\S 3$ of a number of special cases.

Let Φ be an arbitrary quasi-field of characteristic different from 2 in which an involutorial anti-automorphism $\alpha \rightarrow \bar{\alpha}$ is defined. For the present we do not exclude the cases where Φ is commutative and $\bar{\alpha} \equiv \alpha$ or Φ is a quadratic field with $\alpha \rightarrow \bar{\alpha}$ as its automorphism. Suppose \Re is an n-dimensional vector space over Φ. We define a bilinear form (x, y) as a function of pairs of vectors with values in Φ, such that

$$
\begin{align*}
\left(x_{1}+x_{2}, y\right) & =\left(x_{1}, y\right)+\left(x_{2}, y\right), & \left(x, y_{1}+y_{2}\right) & =\left(x, y_{1}\right)+\left(x, y_{2}\right), \tag{1}\\
(x, y \alpha) & =(x, y) \alpha, & (x \alpha, y) & =\bar{\alpha}(x, y),
\end{align*}
$$

for all x, y in \Re and α in Φ. If $x_{1}, x_{2}, \cdots, x_{n}$ is a basis for \Re and ($\left.x_{i}, x_{j}\right)=\alpha_{i j}$, the matrix $A=\left(\alpha_{i j}\right)$ is called the matrix of (x, y) relative to this basis. By (1) it determines (x, y) as $\sum \bar{\xi}_{i} \alpha_{i j} \eta_{j}$, if $x=\sum x_{i} \xi_{i}$ and $y=\sum x_{i} \eta_{i}$. If $y_{1}, y_{2}, \cdots, y_{n}$ where $y_{i}=\sum x_{j} \rho_{j i}$ is a second basis for \Re where $R=\left(\rho_{i j}\right)$ is nonsingular, the matrix of (x, y) relative to this basis is $\bar{R}^{\prime} A R$. We call A and $\bar{R}^{\prime} A R$ cogredient. The form (x, y) is hermitian (skew-hermitian), if $(y, x)=(\overline{x, y})((y, x)=-(\overline{x, y}))$. This is equivalent to the condition $\bar{A}^{\prime}=A\left(\bar{A}^{\prime}=-A\right)$.

It is readily seen that we may pass from the basis y_{i} to the x 's by a sequence of substitutions of the following two types:
I. $y_{i} \rightarrow y_{i},(i \neq r), y_{r} \rightarrow y_{r}+y_{s} \theta,(s \neq r)$.
II. $y_{i} \rightarrow y_{i},(i \neq r), y_{r} \rightarrow y_{r} \theta,(\theta \neq 0)$.

It follows that we may pass from a matrix to any other matrix cogredient to it by a sequence of transformations of the corresponding types:
I. Addition of the sth column multiplied on the right by θ to the r th together with addition of the s th row multiplied on the left by $\bar{\theta}$ to the r th.
II. Multiplication of the r th column on the right by $\theta \neq 0$ together with multiplication of the r th row on the left by $\bar{\theta}$.

We showed in an earlier paper that any hermitian form or skew-

[^0]
[^0]: ${ }^{1}$ Presented to the Society, October 28, 1939.

