A NOTE ON HERMITIAN FORMS¹

N. JACOBSON

In this note we effect a reduction of the theory of hermitian forms of two particular types (coefficients in a quadratic field or in a quaternion algebra with the usual anti-automorphism) to that of quadratic forms. The main theorem ($\S2$) enables us to apply directly the known results on quadratic forms. This is illustrated in the discussion in $\S3$ of a number of special cases.

Let Φ be an arbitrary quasi-field of characteristic different from 2 in which an involutorial anti-automorphism $\alpha \rightarrow \bar{\alpha}$ is defined. For the present we do not exclude the cases where Φ is commutative and $\bar{\alpha} \equiv \alpha$ or Φ is a quadratic field with $\alpha \rightarrow \bar{\alpha}$ as its automorphism. Suppose \Re is an *n*-dimensional vector space over Φ . We define a bilinear form (x, y) as a function of pairs of vectors with values in Φ , such that

(1)
$$\begin{aligned} &(x_1 + x_2, y) = (x_1, y) + (x_2, y), & (x, y_1 + y_2) = (x, y_1) + (x, y_2), \\ &(x, y\alpha) = (x, y)\alpha, & (x\alpha, y) = \bar{\alpha}(x, y), \end{aligned}$$

for all x, y in \Re and α in Φ . If x_1, x_2, \dots, x_n is a basis for \Re and $(x_i, x_j) = \alpha_{ij}$, the matrix $A = (\alpha_{ij})$ is called the matrix of (x, y) relative to this basis. By (1) it determines (x, y) as $\sum \bar{\xi}_i \alpha_{ij} \eta_j$, if $x = \sum x_i \xi_i$ and $y = \sum x_i \eta_i$. If y_1, y_2, \dots, y_n where $y_i = \sum x_j \rho_{ji}$ is a second basis for \Re where $R = (\rho_{ij})$ is nonsingular, the matrix of (x, y) relative to this basis is $\overline{R}' A R$. We call A and $\overline{R}' A R$ cogredient. The form (x, y) is hermitian (skew-hermitian), if (y, x) = (x, y) ($(y, x) = -(\overline{x}, \overline{y})$). This is equivalent to the condition $\overline{A}' = A$ ($\overline{A}' = -A$).

It is readily seen that we may pass from the basis y_i to the x's by a sequence of substitutions of the following two types:

I. $y_i \rightarrow y_i$, $(i \neq r)$, $y_r \rightarrow y_r + y_s \theta$, $(s \neq r)$.

II. $y_i \rightarrow y_i$, $(i \neq r)$, $y_r \rightarrow y_r \theta$, $(\theta \neq 0)$.

It follows that we may pass from a matrix to any other matrix cogredient to it by a sequence of transformations of the corresponding types:

I. Addition of the sth column multiplied on the right by θ to the rth together with addition of the sth row multiplied on the left by $\overline{\theta}$ to the rth.

II. Multiplication of the *r*th column on the right by $\theta \neq 0$ together with multiplication of the *r*th row on the left by $\overline{\theta}$.

We showed in an earlier paper that any hermitian form or skew-

¹ Presented to the Society, October 28, 1939.