A METHOD FOR PROVING CERTAIN ABSTRACT GROUPS TO BE INFINITE ${ }^{1}$

H. S. M. COXETER

1. Introduction. I have stated elsewhere ${ }^{2}$ that the group $(3,3,4 ; 4)$, defined by

$$
R^{3}=S^{3}=(R S)^{4}=\left(R^{-1} S^{-1} R S\right)^{4}=1
$$

is infinite. This fact will now be proved by showing that there is a factor group of order $24 n^{4}$ for every positive integer n.

We shall find a closely related group of order $48 n^{4}$, satisfying the relations $S^{3}=T^{2}=(S T)^{8}=\left(S^{-1} T S T\right)^{6}=1$, which have been studied by Brahana; ${ }^{3}$ but there is no overlapping, since his "subgroup H " is not invariant in our case, although there still is an abelian invariant subgroup of index 48 . In fact, it was the search for such a subgroup that led to the simple treatment given here.

Section 7 is inserted for its intrinsic interest, and can be omitted without impairing the proof of the main result (§8).
2. A group of order n^{4}. Consider the direct product of two cyclic groups of order n. Since the defining relations $M_{1}^{n}=M_{2}^{n}=M_{1}^{-1} M_{2}^{-1} M_{1} M_{2}$ $=1$ imply $\left(M_{1} M_{2}\right)^{n}=1$, they may be put into the form ${ }^{4}$

$$
\begin{equation*}
M_{1}^{n}=M_{2}^{n}=M_{3}^{n}=M_{1} M_{2} M_{3}=M_{3} M_{2} M_{1}=1 \tag{1}
\end{equation*}
$$

Hence the direct product of four cyclic groups of order n is defined by

$$
\begin{align*}
M_{i}^{n}=M_{1} M_{2} M_{3}=M_{3} M_{2} M_{1} & =N_{j}^{n}=N_{1} N_{2} N_{3}= & N_{3} N_{2} N_{1}=1 \\
M_{i} N_{j} & =N_{j} M_{i}, & i, j=1,2,3 \tag{2}
\end{align*}
$$

3. A group of order $4 n^{4}$. These relations continue to hold when M_{i} is replaced by N_{i}, and N_{j} by M_{j}^{-1}. We now enlarge the group of order n^{4} by adjoining an operator A, of period four, which transforms it according to this automorphism. The extra relations that have to be added to (2) are

$$
A^{4}=1, \quad A^{-1} M_{i} A=N_{i}, \quad A^{-1} N_{j} A=M_{i}^{-1}
$$

[^0]
[^0]: ${ }^{1}$ Presented to the Society, September 6, 1938. The enumerative method described in the abstract (this Bulletin, 44-9-331) seems to be effective only in those cases where more orthodox methods are equally effective.
 ${ }^{2}$ Coxeter [2, p. 101, second footnote].
 ${ }^{3}$ Brahana [1].
 ${ }^{4}$ In the notation of Coxeter [2, p. 87], this is $(n, n, n ; 1)$.

