THE MINIMUM NUMBER OF GENERATORS FOR INSEPARABLE ALGEBRAIC EXTENSIONS¹

M. F. BECKER AND S. MACLANE

1. Finite algebraic extensions of imperfect fields. A finite separable algebraic extension L of a given field K can always be generated by a single primitive element x, in the form L = K(x). If K has characteristic p, while L/K is inseparable, there may be no such primitive element. The necessary and sufficient condition for the existence of such an element is to be found in Steinitz.² When there is no such primitive element, there is the question:³ given K, what is the minimum integer m such that every finite extension L/K has a generation $L = K(x_1, x_2, \dots, x_m)$ by not more than m elements?

The question can be answered by employing Teichmüller's⁴ notion of the "degree of imperfection" of K. In invariant fashion, a field K of characteristic p determines a subfield K^p consisting of all pth powers of elements of K. If the extension K/K^p is finite, its degree $[K:K^p]$ is a power p^m of the characteristic, and the exponent m is called the *degree of imperfection* of K. For instance, let P be a perfect field of characteristic p and let x, y be elements algebraically independent with respect to P. Form the fields

(1)
$$S = P(x), \quad T = P(x, y).$$

Then $S = S^{p}(x)$, $[S:S^{p}] = p$, while $[T:T^{p}] = p^{2}$, so that T is "more imperfect" than S.

THEOREM 1. If the field K of characteristic p has a finite degree of imperfection m, then every finite algebraic extension $L \supset K$ can be obtained by adjoining not more than m elements to K. Furthermore, there exist finite extensions $L \supset K$ which cannot be obtained by adjoining fewer than m elements to K.

PROOF. First consider the particular extension $K^{1/p}$ consisting of all *p*th roots of elements in *K*. Because of the isomorphism $a \leftrightarrow a^{1/p}$,

(2)
$$[K^{1/p}:K] = [K:K^p] = p^m$$

Each element y in $K^{1/p}$ satisfies over K an equation $y^p = a$ of degree p.

¹ Presented to the Society, October 28, 1939.

² E. Steinitz, Algebraische Theorie der Körper, Berlin, de Gruyter, 1930, p. 72.

³ This problem was suggested to one of us by O. Ore.

⁴O. Teichmüller, p-Algebren, Deutsche Mathematik, vol. 1 (1936), pp. 362-388.