THE MINIMUM NUMBER OF GENERATORS FOR INSEPARABLE ALGEBRAIC EXTENSIONS ${ }^{1}$

M. F. BECKER AND S. MacLANE

1. Finite algebraic extensions of imperfect fields. A finite separable algebraic extension L of a given field K can always be generated by a single primitive element x, in the form $L=K(x)$. If K has characteristic p, while L / K is inseparable, there may be no such primitive element. The necessary and sufficient condition for the existence of such an element is to be found in Steinitz. ${ }^{2}$ When there is no such primitive element, there is the question $:^{3}$ given K, what is the minimum integer m such that every finite extension L / K has a generation $L=K\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ by not more than m elements?

The question can be answered by employing Teichmüller's ${ }^{4}$ notion of the "degree of imperfection" of K. In invariant fashion, a field K of characteristic p determines a subfield K^{p} consisting of all p th powers of elements of K. If the extension K / K^{p} is finite, its degree [$K: K^{p}$] is a power p^{m} of the characteristic, and the exponent m is called the degree of imperfection of K. For instance, let P be a perfect field of characteristic p and let x, y be elements algebraically independent with respect to P. Form the fields

$$
\begin{equation*}
S=P(x), \quad T=P(x, y) \tag{1}
\end{equation*}
$$

Then $S=S^{p}(x),\left[S: S^{p}\right]=p$, while $\left[T: T^{p}\right]=p^{2}$, so that T is "more imperfect" than S.

Theorem 1. If the field K of characteristic p has a finite degree of imperfection m, then every finite algebraic extension $L \supset K$ can be obtained by adjoining not more than m elements to K. Furthermore, there exist finite extensions $L \supset K$ which cannot be obtained by adjoining fewer than m elements to K.

Proof. First consider the particular extension $K^{1 / p}$ consisting of all p th roots of elements in K. Because of the isomorphism $a \leftrightarrows a^{1 / p}$,

$$
\begin{equation*}
\left[K^{1 / p}: K\right]=\left[K: K^{p}\right]=p^{m} \tag{2}
\end{equation*}
$$

Each element y in $K^{1 / p}$ satisfies over K an equation $y^{p}=a$ of degree p.

[^0]
[^0]: ${ }^{1}$ Presented to the Society, October 28, 1939.
 ${ }^{2}$ E. Steinitz, Algebraische Theorie der Körper, Berlin, de Gruyter, 1930, p. 72.
 ${ }^{3}$ This problem was suggested to one of us by O. Ore.
 ${ }^{4}$ O. Teichmüller, p-Algebren, Deutsche Mathematik, vol. 1 (1936), pp. 362-388.

