NOTE ON THE CURVATURE OF ORTHOGONAL TRAJECTORIES OF LEVEL CURVES OF GREEN'S FUNCTION. III

J. L. WALSH

If R is a simply connected region of the extended (x, y)-plane with boundary B, and if Green's function $G(x, y)$ exists for R with pole in the finite point O, we denote by $\{T\}$ the set of orthogonal trajectories to the level curves $G(x, y)=\log r, 0<r<1$, in R. The totality of circles each osculating at O one of the set of curves T passing through O consists precisely of the set of circles through O and through another fixed point D, depending on O and R. The point D is called the conjugate of O with respect to R. The term "circle" is here and below used in the extended sense, to include straight line, unless otherwise noted.

In a series of papers ${ }^{1}$ the writer has recently studied some of the properties of the point D, notably (in M and I) that every circle through O and D cuts B; and (in II) that every point exterior to R is the conjugate with respect to R of a suitably chosen point O interior to R. It is the object of the present note to establish still further properties of the conjugate, namely the following theorems:

Theorem 1. Let R be a simply connected region of the w-plane with at least two boundary points. Let C be a circle intersecting the boundary of R in the finite point α. Let C be the boundary of a circular region R^{\prime} (a half-plane, interior of a circle, or exterior of a circle, boundary points not included) whose points lie in R, and let T be a triangle contained in R^{\prime}, with the vertex α. Let the sequence of points w_{1}, w_{2}, \cdots lie in T and approach α. Then the conjugate of w_{n} with respect to R also approaches α as n becomes infinite.

Theorem 2. Let R be a simply connected region of the w-plane with at least two boundary points, and let w_{0} be a boundary point of R. Then there exists a sequence of points w_{1}, w_{2}, \cdots in R approaching w_{0} such that the conjugate of w_{n} with respect to R approaches w_{0}.

Theorem 3. There exists a limited Jordan region R of the w-plane, a boundary point w_{0} of R, and a sequence w_{1}, w_{2}, \cdots of points of R approaching w_{0} such that the conjugate of w_{n} with respect to R becomes infinite with n.

[^0]
[^0]: ${ }^{1}$ American Mathematical Monthly, vol. 42 (1935), pp. 1-17; Proceedings of the National Academy of Sciences, vol. 23 (1937), pp. 166-169; this Bulletin, vol. 44 (1938), pp. 520-523. We shall refer to these papers as M, I, II respectively.

