COMBINATORIC INTERPRETATION OF A FORMULA
FOR THE »TH DERIVATIVE OF A FUNCTION
OF A FUNCTION

I. OPATOWSKI
Let f(x)=F (qb(x)). The formula of Faa’' di Bruno* states that
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where [J% is taken for @ system (s) of positive integral solutions i,, &,
of the equations D 5, =k, D _.kd,=n and Y, is taken for all such sys-
tems. The factor Ay, is equal to #![[[4,!(k.!)r]-'. From a recent re-
sult of H. S. Wall{ we have therefore that the numerical factor Ay, in
(1) is equal to the number of ways that n different objects can be placed
in k=Y ., compartments, k, in each of i, compartments, without regard
to the order of arrangement of the compartments.

H. S. Wall expressed the nth derivative of f(x) in terms of logarith-
mic derivatives of f(x).} Putting F(¢)=¢?, ¢(x)=log f(x) in (1) his
formula appears as a particular case of (1).

For functions of many variables f(x)= F(¢1(x), ¢ao(x), + * -, dul(x))
the formula of F. G. Teixeira§ states that
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where H‘;’) is taken for a system (o) of nonnegative integral solu-
tions a, of the equation )@=k and >, is taken for all such systems;

©) is taken for a system (s) of positive integral solutions ki, 4. of
the equations Zm, =ay, Etr’lftrktr =# and Zs is taken for all such sys-
tems. Ay, is equal to n![[Jude!(ker 1) i#]-1. Ay has therefore the same
combinatoric meaning as Ag..
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