THE ANALOGUE OF THE MOEBIUS GROUP OF CIRCULAR TRANSFORMATIONS IN THE KASNER PLANE*

JOHN DE CICCO

1. Introduction. We shall begin by giving some fundamental definitions. In this paper, by a curve of the plane π we shall mean a differential element of the third order in the plane π . A simple horn-set consists of all the curves (third order differential elements) in the plane π which possess a common point and a common direction. Let x denote the curvature and y = dx/ds the rate of variation of the curvature per unit length of arc s of any curve of a simple horn-set at the common point. Then any curve of a simple horn-set is given by an ordered pair of numbers (x, y). From this, it follows that a simple horn-set of the plane π is a two-dimensional space, called the *Kasner* plane K_2 , where any point of K_2 is a curve (x, y) of the simple hornset. Thus to a given simple horn-set of the plane π , there is associated an auxiliary plane, called the Kasner plane K_2 , such that any given point of the Kasner plane represents a curve of the simple horn-set whose curvature and rate of variation of the curvature per unit length of arc at the common point are the abscissa x and the ordinate y of the given point.

Kasner has shown that the group of conformal transformations in the plane π operating on the curves of a simple horn-set induces the *three-parameter group* G_3 :

(1)
$$X = mx + h, \qquad Y = m^2y + k,$$

where $m \neq 0$, *h*, *k* are constants, from the points (x, y) to the points (X, Y) of the Kasner plane.[†] The Kasner plane is thus an affine plane.

A line consists of the ∞^1 points C(x, y) of the Kasner plane which satisfy a linear equation in x and y with the coefficients of x and y not both zero. With respect to the group G_3 , the lines of the Kasner plane may be classified into three distinct types.

(a) A general line is a line whose equation is of the form y = px+r, where $p \neq 0$ and r are constants.

(b) An *infinite line* is a line whose equation is of the special form y = const.

^{*} Presented to the Society, February 25, 1939.

[†] Kasner, *Conformal geometry*, Proceedings of the Fifth International Congress of Mathematicians, Cambridge, 1912, vol. 2. Kasner and Comenetz, *Conformal geometry* of horn angles, Proceedings of the National Academy of Sciences, vol. 22 (1936), pp. 303–309.