THE ANALOGUE OF THE MOEBIUS GROUP OF CIRCULAR TRANSFORMATIONS IN THE KASNER PLANE*

JOHN DE CICCO

1. Introduction. We shall begin by giving some fundamental definitions. In this paper, by a curve of the plane π we shall mean a differential element of the third order in the plane π. A simple horn-set consists of all the curves (third order differential elements) in the plane π which possess a common point and a common direction. Let x denote the curvature and $y=d x / d s$ the rate of variation of the curvature per unit length of arc s of any curve of a simple horn-set at the common point. Then any curve of a simple horn-set is given by an ordered pair of numbers (x, y). From this, it follows that a simple horn-set of the plane π is a two-dimensional space, called the Kasner plane K_{2}, where any point of K_{2} is a curve (x, y) of the simple hornset. Thus to a given simple horn-set of the plane π, there is associated an auxiliary plane, called the Kasner plane K_{2}, such that any given point of the Kasner plane represents a curve of the simple horn-set whose curvature and rate of variation of the curvature per unit length of arc at the common point are the abscissa x and the ordinate y of the given point.

Kasner has shown that the group of conformal transformations in the plane π operating on the curves of a simple horn-set induces the three-parameter group G_{3} :

$$
\begin{equation*}
X=m x+h, \quad Y=m^{2} y+k \tag{1}
\end{equation*}
$$

where $m \neq 0, h, k$ are constants, from the points (x, y) to the points (X, Y) of the Kasner plane. \dagger The Kasner plane is thus an affine plane.

A line consists of the ∞^{1} points $C(x, y)$ of the Kasner plane which satisfy a linear equation in x and y with the coefficients of x and y not both zero. With respect to the group G_{3}, the lines of the Kasner plane may be classified into three distinct types.
(a) A general line is a line whose equation is of the form $y=p x+r$, where $p \neq 0$ and r are constants.
(b) An infinite line is a line whose equation is of the special form $y=$ const.

[^0]
[^0]: * Presented to the Society, February 25, 1939.
 \dagger Kasner, Conformal geometry, Proceedings of the Fifth International Congress of Mathematicians, Cambridge, 1912, vol. 2. Kasner and Comenetz, Conformal geometry of horn angles, Proceedings of the National Academy of Sciences, vol. 22 (1936), pp. 303-309.

