A THEOREM ON SIMULTANEOUS REPRESENTATION OF PRIMES AND ITS COROLLARIES*

ARNOLD E. ROSS

1. Simultaneous representation of primes. Two numbers m and M are said to be represented simultaneously by a ternary form

$$
\begin{equation*}
f=a x^{2}+b y^{2}+c z^{2}+2 r y z+2 s x z+2 t x y \tag{1}
\end{equation*}
$$

and its reciprocal \dagger

$$
\begin{equation*}
F=A X^{2}+B Y^{2}+C Z^{2}+2 R Y Z+2 S X Z+2 T X Y \tag{2}
\end{equation*}
$$

if there exist integers x, y, z and X, Y, Z such that $f(x, y, z)=m$, $F(X, Y, Z)=M$ and $x X+y Y+z Z=0$.

The case of interest is that in which representation is not only simultaneous but also proper. \ddagger One is usually interested in the existence of such numbers m and M, fulfilling certain conditions, with the view of a suitable normalization of the given form f and its reciprocal F.§

In this paper we will require that m and M be a pair of simultaneously and properly represented distinct odd primes or doubles of such primes and derive a normalized form permitting some interesting applications. We note that the first coefficient a of f and the third coefficient C of F are represented simultaneously and properly and express our result as the following theorem.

Theorem 1. If f is a ternary quadratic form with a properly primitive reciprocal and if f is (i) properly or (ii) improperly primitive, then it is equivalent to a form f^{\prime} such that (i) a^{\prime} and C^{\prime} are distinct odd primes not dividing $2 \Omega \Delta$, or (ii) $a^{\prime}=2 \alpha$ and α and C^{\prime} are distinct odd primes not dividing $2 \Omega \Delta$. Here a^{\prime} is the leading coefficient of f^{\prime}, and C^{\prime} is the third coefficient of the reciprocal F^{\prime} of f^{\prime}.

We note that since F is properly primitive it represents properly an integer prime to any assigned integer and hence to $2 \Omega \Delta$. If $\Omega \Delta$ is odd, then F represents properly an integer congruent to $1(\bmod 4)$

[^0]
[^0]: * Presented to the Society in part, April 9, 1937, under the title On certain rational transformations.
 \dagger See Dickson, Studies in the Theory of Numbers, University of Chicago Press, p. 12.
 \ddagger Ibid.
 § Dickson, ibid., pp. 15-17 and 54-60; P. Bachman, Die Arithmetik der quadratischen Formen, vol. 1, p. 64; H. J. S. Smith, Collected Works, vol. 1, pp. 455-509.

