$$\sigma_0 \leq \limsup_{n \to \infty} (2 \log n) / \nu_n.$$

In order that $\sigma_0 \leq 0$, in which case (3.1) will converge in the right half of the *s*-plane, it is sufficient that ν_n tend to infinity faster than log *n*. The argument used to complete the proof of Theorem 2 is the same as the one used above in connection with Theorem 1.

Notice that if $\{\nu_{n+1}-\nu_n\}$ is not a null sequence, then ν_n tends to infinity faster than log *n*. This eliminates the extra restriction used in the proof of Theorem 1.

NORTHWESTERN UNIVERSITY

ON CERTAIN IDEALS OF DIFFERENTIAL POLYNOMIALS*

J. F. RITT AND E. R. KOLCHIN

Introduction. Let Σ be an ideal of differential polynomials in the unknowns y_1, \dots, y_n . If the manifold of Σ is composed of s manifolds $\mathfrak{M}_1, \dots, \mathfrak{M}_s$ not necessarily irreducible, none of which has a solution in common with any other, Σ has a unique representation as the product of s ideals $\Sigma_1, \dots, \Sigma_s$ whose manifolds are, respectively, the \mathfrak{M}_i .[†]

Most of the present note is concerned with decompositions of the foregoing type and considers the case in which one of the \mathfrak{M}_i , say \mathfrak{M}_1 , is composed of a single solution, that is, of a set of functions $\tilde{y}_1, \dots, \tilde{y}_n$ contained in the underlying field. We shall examine, for this special case, the structure of the ideal Σ_1 . Details will be given only for the case of a single unknown; the extensions to several unknowns are too obvious to require explicit mention. It will suffice, furthermore, to treat the case in which \mathfrak{M}_1 is composed of the solution y=0.

In §9, we consider a problem closely related to the theorem of decomposition stated above.

1. On the structure of Σ_1 . Let Σ be an ideal of forms in the unknown y. Let y=0 be an essential irreducible manifold for Σ . Let Σ be the product of Σ_1 and Σ_2 where Σ_1 has y=0 as its manifold and Σ_2 does not admit y=0 as a solution. Let p be a positive integer such that y^p is contained in Σ_1 .

1939]

^{*} Presented to the Society, September 8, 1939.

[†] Proceedings of the National Academy of Sciences, vol. 25 (1939), p. 90. Product is defined in the expected way. That the intersection of the Σ_i is identical with their product follows immediately from the fact that the Σ_i , considered as algebraic ideals, are paarweise teilerfremd. See van der Waerden, Moderne Algebra, vol. 2, p. 46.