THEOREMS ASSOCIATED WITH THE RIESZ AND THE DIRICHLET'S SERIES METHODS OF SUMMATION

H. L. GARABEDIAN

1. Introduction. It is the object of this paper to establish several theorems suggested by a certain theorem due to Hardy.* Hardy's theorem need not be stated here since it is a special case of Theorem 1 of this paper.

We are concerned with the infinite series

$$
\begin{equation*}
\sum_{n=1}^{\infty} u_{n}=u_{1}+u_{2}+\cdots \tag{1.1}
\end{equation*}
$$

where we define $s_{n}=u_{1}+u_{2}+\cdots+u_{n}$.
We list the several different methods of summation with which this account is occupied.
A. The Riesz definition. \dagger We write $C_{\lambda}{ }^{r}(\omega)=\sum_{\lambda_{n}<\omega}\left(\omega-\lambda_{n}\right)^{r} u_{n},(r>0)$, where $\left\{\lambda_{n}\right\}$ is a sequence of real increasing numbers whose limit is infinite and such that $\lambda_{1} \geqq 0$. If $\omega^{-r} C_{\lambda}^{r}(\omega) \rightarrow U$ as $\omega \rightarrow \infty$, the series (1.1) is said to be summable (λ, r) to the sum U. If in the general definition we put $r=1$, $\omega=\lambda_{n}$, we obtain

$$
\begin{equation*}
\left(\mu_{1} s_{1}+\mu_{2} s_{2}+\cdots+\mu_{n-1} s_{n-1}\right) / \lambda_{n} \tag{1.2}
\end{equation*}
$$

where $\mu_{i}=\lambda_{i+1}-\lambda_{i}$ and $\lambda_{n}=\mu_{1}+\mu_{2}+\cdots+\mu_{n-1}, \lambda_{1}=0$. We refer to means of the type (1.2) as Riesz means, as distinguished from the Riesz typical means of the general definition, and designate them henceforth by the symbol $(\lambda, 1)$. This is the natural generalization of Cesàro's first mean which suggests itself in the attachment of varying weights to the successive partial sums s_{ν}.
B. The Dirichlet's series definitions. $\ddagger \mathrm{A}$ series (1.1) is said to be summable by the Dirichlet's series method provided that

$$
\lim _{s \rightarrow 0} \sum_{n=1}^{\infty} u_{n} e^{-\nu_{n} s}
$$

exists, where $\left\{\nu_{n}\right\}$ is a sequence of positive increasing real numbers whose limit is infinite, and where the Dirichlet's series converges when $\Re(s)>0, s$ being restricted to this half plane.

[^0]
[^0]: * G. H. Hardy, Proceedings of the London Mathematical Society, (2), vol. 8 (1910), pp. 301-320, p. 311.
 \dagger M. Riesz, Comptes Rendus, vol. 149 (1909), pp. 909-912.
 \ddagger See, for example, H. L. Garabedian, Annals of Mathematics, (2), vol. 32 (1931), pp. 83-106, p. 85.

