GROUPS OF MOTIONS IN CONFORMALLY FLAT SPACES. II

JACK LEVINE

1. Introduction. In a previous paper with a similar title,* we have shown that all groups of motions admitted by a conformally flat metric space V_n must be subgroups of the general conformal group G_N of $N = \frac{1}{2}(n+1)(n+2)$ parameters generated by[†]

(1)
$$\xi^i = b^i + a_0 x^i + x^i a_j x^j - \frac{1}{2} a_i e_i e_j (x^j)^2 + b_j^i x^j, \qquad e_i = \pm 1.$$

In (1), the b_i^i satisfy the relations $e_i b_i^i + e_j b_i^j = 0$, (i, j not summed). Otherwise the *a*'s and *b*'s in (1) are arbitrary.

To define a group of motions of V_n , the ξ^i must satisfy the equations

(2)
$$\xi^k \frac{\partial h}{\partial x^k} + h \frac{\partial \xi^i}{\partial x^i} = 0, \qquad i \text{ not summed},$$

and the coordinates x^i of (2) are such that $g_{ij} = e_i \delta_j^i h^2$. Hence in this coordinate system, the metric has the form

$$ds^2 = h^2 \sum e_i (dx^i)^2.$$

In this paper we shall consider the simplest subgroups of G_N , and determine the nature of the function h corresponding to each. Also we give a restatement of Theorem 2 of I, since it is not complete as given.

2. The group G_N . The basis of the group G_N may be taken in the form

$$(4) P_i = p_i,$$

(5)
$$S_{ij} = e_i x^i p_j - e_j x^j p_i,$$
 $i, j \text{ not summed}$

$$(6) U = x^i p_i,$$

noted.

(7)
$$V_{i} = 2x^{i}x^{j}p_{j} - e_{i}e_{j}(x^{j})^{2}p_{i},$$

where $p_i = \partial/\partial x^i$; and its commutators are[‡]

^{*} Groups of motions in conformally flat spaces, this Bulletin, vol. 42 (1936), pp. 418-422. The results of this paper (which we refer to as I) will be assumed known.
† All small Latin indices take the values 1, 2, ..., n, with n>2, unless otherwise

[‡] S. Lie, Theorie der Transformationsgruppen, vol. 3, pp. 321-334.