NEW POINT CONFIGURATIONS AND ALGEBRAIC CURVES CONNECTED WITH THEM*

ARNOLD EMCH

1. Introduction. In the memorial volume \dagger for Professor Hayashi, I studied an involutorial Cremona transformation in a projective S_{r} which is obtained as follows: Let $C_{i}=(a x)_{i} \lambda_{i}{ }^{2}+(b x)_{i} \lambda_{i}+(c x)_{i}=0$, ($i=1,2, \cdots, r$), be r hypercones in S_{r}. Every value of λ_{i} determines a hypertangent plane to the cone C_{i}. Thus the parameters $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}$ for the hypercones $C_{1}, C_{2}, \cdots, C_{r}$, in the same order, determine r hyperplanes which intersect in a point (x) of S_{r}. From this point (x) there pass, one for each of the r hypercones, r more tangent hyperplanes whose parameters $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \cdots, \lambda_{r}^{\prime}$ are in the same order uniquely determined by the set $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}$, and hence are rational functions

$$
\rho \lambda_{i}^{\prime}=\phi_{i}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}\right), \quad i=1,2, \cdots, r
$$

of the parameters λ. Conversely, the set $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \cdots, \lambda_{r}^{\prime}$ determines λ_{i} uniquely: $\sigma \lambda_{i}=\phi_{i}\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \cdots, \lambda_{r}^{\prime}\right)$. If therefore the λ^{\prime} 's and $\lambda^{\prime \prime}$'s are interpreted as coordinates of points of euclidean spaces $E_{r}(\lambda)$ and $E_{r}^{\prime}\left(\lambda^{\prime}\right)$, there exists an involutorial Cremona transformation between the two r-dimensional spaces. The order and fundamental elements of this involution were determined in the corresponding projective spaces S_{r} and S_{r}^{\prime} and applications given for S_{2} and S_{3}. These belong to a remarkable class of involutions which have the property that when in S_{r} and S_{r}^{\prime}

$$
P\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots, \lambda_{r+1}\right), \quad P^{\prime}\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{3}^{\prime}, \cdots, \lambda_{r+1}^{\prime}\right)
$$

are corresponding points and any number of transpositions between coordinates in the same columns is performed, say

$$
\begin{aligned}
& Q\left(\lambda_{1}, \lambda_{2}^{\prime}, \lambda_{3}^{\prime}, \cdots, \lambda_{\imath}^{\prime}, \cdots, \lambda_{r}, \cdots, \lambda_{r+1}^{\prime}\right), \\
& Q^{\prime}\left(\lambda_{1}^{\prime}, \lambda_{2}, \lambda_{3}, \cdots, \lambda_{i}, \cdots, \lambda_{r}^{\prime}, \cdots, \lambda_{r+1}\right),
\end{aligned}
$$

then Q, Q^{\prime} is always a couple of corresponding points of the involution.

To this class also belong the well known quadratic and cubic involutions in $S_{2}, \rho x_{i}^{\prime}=1 / x_{i},(i=1,2,3)$, and in $S_{3}, \rho x_{i}^{\prime}=1 / x_{i},(i=1,2,3,4)$,

[^0]
[^0]: * Presented to the Society, September 6, 1938.
 \dagger The Tôhoku Mathematical Journal, vol. 37 (1933), pp. 100-109. See also Commentarii Mathematici Helvetici, vol. 4 (1932), pp. 65-73.

