## CREMONA INVOLUTIONS DETERMINED BY A PENCIL OF SURFACES*

FRANK C. GENTRY

1. Introduction. The characteristics of the involutorial Cremona transformations determined by a pencil of surfaces of order $n$ and containing an ( $n-2$ )-fold line $d$ have been determined by Carroll [1]. The particular features of these transformations, which arise when the surfaces of the pencil are of order 3 and the curve residual to the line $d$ in the base of the pencil is composite, have been considered in some detail by the same author [2]. Snyder [3] has suggested that a similar study of involutions defined by surfaces of higher order might be of interest.

The transformation is defined by Carroll as follows. Let

$$
\begin{equation*}
\lambda_{1} F_{n}(x)-\lambda_{2} F_{n}^{\prime}(x)=0 \tag{1}
\end{equation*}
$$

be a pencil of surfaces of order $n$ containing the line $d \equiv x_{1}=0, x_{2}=0$ to multiplicity $n-2$. Let $(z)=\left(0,0, z_{3}, z_{4}\right)$ be a variable point on the line $d$, and let the pencil of surfaces (1) be connected with ( $z$ ) by the relation

$$
\begin{equation*}
z_{3} \phi_{1}\left(\lambda_{1}, \lambda_{2}\right)-z_{4} \phi_{2}\left(\lambda_{1}, \lambda_{2}\right)=0, \tag{2}
\end{equation*}
$$

where $\phi_{i},(i=1,2)$, is a binary form of order $k$. A point $(y)$ of space determines a surface of the pencil (1) and hence a value of the ratio $\lambda_{1}: \lambda_{2}$, which in turn determines a point $(z)$ of $d$. The line joining ( $y$ ) and ( $z$ ) meets the member of (1) determined by ( $y$ ) in one further point $\left(y^{\prime}\right)$, the transform of $(y)$ in the involution. The characteristics of the transformation are

$$
\begin{gather*}
S_{1} \sim S_{2 n(k+1)-1}: d^{2(n-2)(k+1)} k(n-2) \bar{d}^{2} \\
C_{4 n-4}^{2 k+1}\{(6 n-8) k+6 n-10\} g \\
d \sim T_{2 n(k+1)-2}: d^{2(n-2)(k+1)} k(n-2) \bar{d} \\
C_{4 n-4}^{2 k+1}\{(6 n-8) k+6 n-10\} g  \tag{3}\\
C_{4 n-4} \sim \Sigma_{4 n(k+1)-4}: d^{4(n-2)(k+1)} k(n-2) \overline{d^{4}} \\
C_{4 n-4}^{4 k+1}\{(6 n-8) k+6 n-10\} g^{2}, \\
R_{n k+2 n-1} \sim R_{n k+2 n-1}: d^{(n-2)(k+2)} k(n-2) \bar{d} \\
\\
C_{4 n-4}^{k+1}\{(6 n-8) k+6 n-10\} g
\end{gather*}
$$

[^0]
[^0]:    * Presented to the Society, September 6, 1938.

