TOPOLOGICAL PROOFS OF UNIQUENESS THEOREMS IN THE THEORY OF DIFFERENTIAL AND INTEGRAL EQUATIONS[†]

ERICH ROTHE

It is known that, for a certain class of representations, the notion of the degree (Abbildungsgrad) can be transferred into Banach spaces and is useful for proving existence theorems for boundary value problems and integral equations.[‡] The same holds for the related notion of the order of a point with respect to the image of a sphere (Rothe [5]). It is the aim of the present paper to apply these notions to the proof of some uniqueness theorems.[§]

Section 1 contains some uniqueness theorems for equations in Banach space. In §2, application is made to a certain system of nonlinear integral equations for which the existence proof was given in [5].

1. Uniqueness theorems in abstract spaces. Let E be a Banach space, || and let $||\mathfrak{x}||$ denote the norm of an element (point) $\mathfrak{x} \in E$. Let rbe a positive number, S the sphere $||\mathfrak{x}|| = r$, and V the "full" sphere $||\mathfrak{x}|| \leq r$. If then $\mathfrak{f}(\mathfrak{x}) = \mathfrak{x} + \mathfrak{F}(\mathfrak{x})$ denotes a "representation with completely continuous translation," \P we denote for any full sphere $V^* \subset V$ and its boundary S^* the degree $\dagger \dagger$ in the point $\mathfrak{y}_0 \subset E, \ddagger \ddagger$ with respect to the representation of V^* given by \mathfrak{f} , by $\gamma(\mathfrak{f}, V^*, \mathfrak{y}_0)$, and likewise the order (see [5, \$2]) of \mathfrak{y}_0 with respect to the image of S^* by $u(\mathfrak{f}, S^*, \mathfrak{y}_0)$. If $\mathfrak{x} = \mathfrak{x}_0$ is an isolated solution of the equation $\mathfrak{f}(\mathfrak{x}) = \mathfrak{y}_0$, then the number $\gamma(\mathfrak{f}, v, \mathfrak{y}_0)$ is the same for all full spheres v with center \mathfrak{x}_0 which contain no other solution. \$ This number is called the index

 \parallel For the definition of Banach space see [1, p. 53].

¶ That is, the "translation" $\mathfrak{F}(\mathfrak{x})$ is unique and continuous, and the set of all points $\mathfrak{F}(\mathfrak{x})$ (with $\mathfrak{x} \subset V$) is compact.

[†] Presented to the Society, November 26, 1937.

[‡] Leray-Schauder [4]. The numbers in brackets refers to the list at the end of this paper.

[§] Considerations closely related to those of the present paper (especially of §1) are to be found in [3, pp. 250, 258]; cf. also the second footnote on page 610 of the present paper. Uniqueness proofs based on other topological ideas were given by R. Caccioppoli (see, for instance, Caccioppoli, *Sugli elementi uniti delle trasformazioni funzionali*, Rendiconti del Seminario Matematico, Padova, vol. 3 (1932), pp. 1–15) and G. Scorza Dragoni (see, for instance, Dragoni, *Sui sistemi di equazioni integrali non lineari*, Rendiconti del Seminario Matematico, Padova, vol. 7 (1936), pp. 1–35).

^{††} See [4, part I, §5].

 $[\]ddagger \eta_0$ is supposed not to lie on $f(S^*)$.

^{§§} See [4, part II, §8].