ON THE SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVES BY SUMS OF BIRKHOFF TYPE*

W. H. McEWEN

1. Introduction. Let

(1)
$$L(u) + \lambda u \equiv u^{(n)} + P_2(x)u^{(n-2)} + \cdots + P_n(x)u + \lambda u = 0, W_j(u) = 0, \qquad j = 1, 2, \cdots, n,$$

be a given linear differential system of the nth order subject to the following hypotheses:

(i) the functions P_2, \dots, P_n are continuous and have continuous derivatives of all orders on (0, 1);

(ii) the boundary conditions, consisting of *n* linearly independent linear equations involving $u^{(k)}(0)$, $u^{(k)}(1)$, $(k=0, 1, \dots, n-1)$, are regular;[†]

(iii) $\lambda = 0$ is not a characteristic value, so that the system L(u) = 0, $W_i(u) = 0$ is incompatible.

Under hypotheses (i), (ii), it is well known that (1) possesses an infinite sequence of characteristic values $\{\lambda_i\}$ (arranged in order of increasing moduli) and a corresponding sequence of characteristic solutions $\{u_i(x)\}$. Moreover, the values λ_i are also the poles of the Green's function $G(x, y; \lambda)$ associated with (1), and these poles are, in general, simple when $|\lambda_i|$ is large.[‡] Furthermore, the system $L'(v) + \lambda v = 0$, $W'_i(v) = 0$, which is adjoint to (1), has the same characteristic values as (1), and a corresponding sequence of characteristic solutions $\{v_i(x)\}$.

For a given function f(x), the Birkhoff series associated with (1) is defined by

(2)
$$\sum_{i=1}^{\infty} \frac{\int_{0}^{1} f(y) v_{i}(y) dy}{\int_{0}^{1} u_{i}(y) v_{i}(y) dy} \cdot u_{i}(x),$$

provided the poles of $G(x, y; \lambda)$ are simple. In the case of multiple poles λ_{α} , the corresponding terms in (2) are to be replaced by the terms $\int_0^1 f(y) R_{\alpha}(x, y) dy$, where $R_{\alpha}(x, y)$ is the residue of G at $\lambda = \lambda_{\alpha}$.

^{*} Presented to the Society, December 30, 1937.

[†] For a definition of this term see G. D. Birkhoff, Transactions of this Society, vol. 9 (1908), pp. 373-395; p. 382.

 $[\]ddagger$ This is always so in the case when n is odd, or when n is even and the system is self-adjoint. When n is even and the system is not self-adjoint, there may be an infinite number of double poles.