1	11
(1,2,1,3), (2,3,2,1), (3,1,3,2),	(1,2,1,3), (2,1,3,1), (3,3,2,2),
(1,2,1,3), (2,1,2,2), (3,3,3,1),	(1,2,1,3), (2,1,3,2), (3,3,2,1),
(1,2,1,3), (2,3,2,2), (3,1,3,1),	(1,2,1,3), (2,3,3,1), (3,1,2,2),
(1,2,1,3), (2,1,2,1), (3,3,3,2),	(1,2,1,3), (2,3,3,2), (3,1,2,1),

while in R(M) we have

т

ш

(1,2,3), (2,3,1), (3,1,2), (1,2,3), (2,1,2), (3,3,1), (1,2,3), (2,3,2), (3,1,1), (1,2,3), (2,1,1), (3,3,2).

Since $\phi_1 = e_1 + e_3$, $\phi_2 = e_2$, $\phi_3 = e_4$, it is not difficult to identify the sets in group III with those in group I. Thus

 $(1, 2, 3)_{\phi_j} = \phi_1 + 2\phi_2 + 3\phi_3 = e_1 + 2e_2 + e_3 + 3e_4 = (1, 2, 1, 3)_{e_i},$ and similarly $(2, 3, 2)_{\phi_j} = (2, 3, 2, 2)_{e_i}, (3, 1, 1)_{\phi_j} = (3, 1, 3, 1)_{e_i}.$

UNIVERSITY OF ALABAMA

TRIPLE SYSTEMS AS RULED QUADRICS*

W. G. WARNOCK

1. Introduction. If *n* elements x_1, x_2, \dots, x_n can be arranged in triples such that each pair $x_i x_i$ occurs in one and only one triple, the arrangement so formed is a simple triple system. Credit for the first published paper on such systems is given to Kirkman.[†] Methods of construction, properties, and forms of interpretation of these and more general multiple systems can be found throughout the mathematical literature since that date.[‡] In this note I propose to treat the element as a generic line in an ordinary three-space. Likewise, I shall point out some of the group properties which seem worthy of men-

[June

тт

^{*} Presented to the Society, November 28, 1936.

[†] Kirkman, The Cambridge and Dublin Mathematical Journal, vol. 2 (1847), pp. 192-204.

[‡] See A. Emch, *Triple and multiple systems, their geometric configurations and groups*, Transactions of this Society, vol. 31 (1929), pp. 25–42. An almost complete list of references is given in this paper. A more recent discussion of multiple systems is to be found in an article by R. D. Carmichael, *Tactical configurations of rank two*, American Journal of Mathematics, vol. 53 (1931), pp. 217–240.