A CHARACTERIZATION OF DEDEKIND STRUCTURES*

MORGAN WARD

If Σ is a Dedekind structure,[†] then for any two elements A and B of Σ , the quotient structures [A, B]/A and B/(A, B) are isomorphic. (Dedekind [2], Ore [3].) I prove here a converse result.

THEOREM. Let Σ be a structure in which for every pair of elements A and B, the quotient structures [A, B]/A and B/(A, B) are isomorphic. Then if either the ascending or descending chain condition holds in Σ , the structure is Dedekindian.

This result is comparatively trivial if *both* the ascending and descending chain conditions hold. That some sort of chain condition is necessary may be seen by a simple example. Consider a structure Σ with an all element O_0 and a unit element E_0 built up out of three ordered structures Σ_1 , Σ_2 , Σ_3 meeting only at O_0 and E_0 , so that if $S_u \varepsilon \Sigma_u$, then

$$(S_u, S_v) = E_0, \qquad [S_u, S_v] = O_0$$

for $u, v = 1, 2, 3, u \neq v$. Then if each Σ_i is a series of the type of the real numbers in the closed interval 0, 1, the quotient structures of any pair $[S_u, S_v]/S_u, S_v/(S_u, S_v)$ are obviously isomorphic. But Σ is clearly non-Dedekindian.

The theorem is of some interest in view of the generalizations Ore has given of his decomposition theorems in Ore [4].

It suffices to prove the result under the hypothesis that the descending chain axiom holds in Σ (Ore [3, p. 410]). We formulate this axiom as follows:

(β) If for any two elements A and B of Σ ,

$$A \supset X_1 \supset X_2 \supset X_3 \supset \cdots \supset B$$

for an infinity of X_i in Σ , all the X_i are equal from a certain point on.

Our proof rests upon several lemmas which we collect here.

LEMMA 1. (Dedekind [2].) Σ is a Dedekind structure if and only if Σ contains no substructure Σ_0 of order five which is non-Dedekindian.

^{*} Presented to the Society, April 15, 1939.

[†] We use the notation and terminology of Ore's fundamental paper, Ore [3], with the following two exceptions. (i) We write $A \supset B$, $B \subset A$ for Ore's $A \ge B$, $B \le A$. (ii) If A is prime over B (Ore [3, p. 411]), we shall say "A covers B" or "B is covered by A" (Birkhoff [1]) and write A > B or B < A.