## A CHARACTERIZATION OF DEDEKIND STRUCTURES*

MORGAN WARD

If $\Sigma$ is a Dedekind structure, $\dagger$ then for any two elements $A$ and $B$ of $\Sigma$, the quotient structures $[A, B] / A$ and $B /(A, B)$ are isomorphic. (Dedekind [2], Ore [3].) I prove here a converse result.

Theorem. Let $\Sigma$ be a structure in which for every pair of elements $A$ and $B$, the quotient structures $[A, B] / A$ and $B /(A, B)$ are isomorphic. Then if either the ascending or descending chain condition holds in $\Sigma$, the structure is Dedekindian.

This result is comparatively trivial if both the ascending and descending chain conditions hold. That some sort of chain condition is necessary may be seen by a simple example. Consider a structure $\Sigma$ with an all element $O_{0}$ and a unit element $E_{0}$ built up out of three ordered structures $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ meeting only at $O_{0}$ and $E_{0}$, so that if $S_{u} \varepsilon \Sigma_{u}$, then

$$
\left(S_{u}, S_{v}\right)=E_{0}, \quad\left[S_{u}, S_{v}\right]=O_{0}
$$

for $u, v=1,2,3, u \neq v$. Then if each $\Sigma_{i}$ is a series of the type of the real numbers in the closed interval 0,1 , the quotient structures of any pair $\left[S_{u}, S_{v}\right] / S_{u}, S_{v} /\left(S_{u}, S_{v}\right)$ are obviously isomorphic. But $\Sigma$ is clearly non-Dedekindian.

The theorem is of some interest in view of the generalizations Ore has given of his decomposition theorems in Ore [4].

It suffices to prove the result under the hypothesis that the descending chain axiom holds in $\Sigma$ (Ore [3, p. 410]). We formulate this axiom as follows:
( $\beta$ ) If for any two elements $A$ and $B$ of $\Sigma$,

$$
A \supset X_{1} \supset X_{2} \supset X_{3} \supset \cdots \text { • } B
$$

for an infinity of $X_{i}$ in $\Sigma$, all the $X_{i}$ are equal from a certain point on.
Our proof rests upon several lemmas which we collect here.
Lemma 1. (Dedekind [2].) $\Sigma$ is a Dedekind structure if and only if $\Sigma$ contains no substructure $\Sigma_{0}$ of order five which is non-Dedekindian.

[^0]
[^0]:    * Presented to the Society, April 15, 1939.
    $\dagger$ We use the notation and terminology of Ore's fundamental paper, Ore [3], with the following two exceptions. (i) We write $A \supset B, B \subset A$ for Ore's $A \geqq B, B \leqq A$. (ii) If $A$ is prime over $B$ (Ore [3, p.411]), we shall say " $A$ covers $B$ " or " $B$ is covered by $A$ " (Birkhoff [1]) and write $A>B$ or $B<A$.

