REGULARITY OF FUNCTION-TO-FUNCTION TRANSFORMATIONS*

MAHLON M. DAY

1. Introduction. In a recent note Hill \dagger considered the transformation

$$
\begin{equation*}
U_{x}(f)=\int_{0}^{\eta} K(x, y) f(y) d y \tag{1}
\end{equation*}
$$

operating on the class \mathfrak{B}_{1} of measurable, essentially bounded, com-plex-valued functions f of one real variable y defined for $0<y<\eta$, and satisfying the condition that $\lim _{y \rightarrow \eta} f(y)$ exists. The kernel $K(x, y)$ is defined for $0<x<\xi, 0<y<\eta$, and the integral is interpreted in the Lebesgue sense. Hill derived a set of conditions on $K(x, y)$ necessary and sufficient that the transformation (1) be regular on \mathfrak{B}_{1}, that is, that for every f in $\mathfrak{B}_{1}, U_{x}(f)$ be defined for all x, and $\lim _{x \rightarrow \xi} U_{x}(f)=\lim _{y \rightarrow \eta} f(y)$.

In §2 of the present paper we generalize Hill's results for a transformation on a class \mathfrak{B}_{m} of bounded measurable functions of m real variables to a class of functions of n real variables. This transformation can be expressed in the form (1) with x standing for $x^{1}, x^{2}, \cdots, x^{n}$ and y for $y^{1}, y^{2}, \cdots, y^{m}$. In $\S 3$ we define for each kernel $K(x, y)$ its domain of regularity Ω as the largest class of functions on which (1) is regular, and we determine some conditions necessary and sufficient that a function f be in Ω. We employ these results in $\S 4$ to derive conditions on $K(x, y)$ necessary and sufficient for the transformation (1) to be regular on certain classes of functions more inclusive than \mathfrak{B}_{m}. Finally, in $\S 5$, we consider several particular cases of the problem of determining a kernel with a specified class of functions as its domain of regularity.
2. Hill's theorem in many variables. We use the following notation throughout this paper: x stands for the ordered set of n real variables $x^{1}, x^{2}, \cdots, x^{n}$, and y for $y^{1}, y^{2}, \cdots, y^{m}$; for $0,0, \cdots, 0$ we write 0 . The equality $a=b$ means that for each $j, a^{i}=b^{j} ; a<b$ that for each $j, a^{j}<b^{j}$; $a \nless b$ that for at least one $j, a^{j} \geqq b^{j}$; and $a>b$ that $b<a$. We define the interval (a, b) as the set of points c such that $a<c<b$.

[^0]
[^0]: * Presented to the Society, September 6, 1938.
 \dagger J. D. Hill, A theorem in the theory of summability, this Bulletin, vol. 42 (1936), pp. 225-228.

