REGULARITY OF FUNCTION-TO-FUNCTION TRANSFORMATIONS*

MAHLON M. DAY

1. Introduction. In a recent note Hill[†] considered the transformation

(1)
$$U_x(f) = \int_0^{\eta} K(x, y) f(y) dy$$

operating on the class \mathfrak{B}_1 of measurable, essentially bounded, complex-valued functions f of one real variable y defined for $0 < y < \eta$, and satisfying the condition that $\lim_{y\to\eta} f(y)$ exists. The kernel K(x, y) is defined for $0 < x < \xi$, $0 < y < \eta$, and the integral is interpreted in the Lebesgue sense. Hill derived a set of conditions on K(x, y)necessary and sufficient that the transformation (1) be *regular* on \mathfrak{B}_1 , that is, that for every f in \mathfrak{B}_1 , $U_x(f)$ be defined for all x, and $\lim_{x\to\xi} U_x(f) = \lim_{y\to\eta} f(y)$.

In §2 of the present paper we generalize Hill's results for a transformation on a class \mathfrak{B}_m of bounded measurable functions of *m* real variables to a class of functions of *n* real variables. This transformation can be expressed in the form (1) with *x* standing for x^1, x^2, \dots, x^n and *y* for y^1, y^2, \dots, y^m . In §3 we define for each kernel K(x, y) its domain of regularity \mathfrak{R} as the largest class of functions on which (1) is regular, and we determine some conditions necessary and sufficient that a function *f* be in \mathfrak{R} . We employ these results in §4 to derive conditions on K(x, y) necessary and sufficient for the transformation (1) to be regular on certain classes of functions more inclusive than \mathfrak{B}_m . Finally, in §5, we consider several particular cases of the problem of determining a kernel with a specified class of functions as its domain of regularity.

2. Hill's theorem in many variables. We use the following notation throughout this paper: x stands for the ordered set of n real variables x^1, x^2, \dots, x^n , and y for y^1, y^2, \dots, y^m ; for 0, 0, \dots , 0 we write 0. The equality a = b means that for each j, $a^j = b^j$; a < b that for each j, $a^j < b^j$; a < b that for at least one j, $a^j \ge b^j$; and a > b that b < a. We define the *interval* (a, b) as the set of points c such that a < c < b.

^{*} Presented to the Society, September 6, 1938.

[†] J. D. Hill, A theorem in the theory of summability, this Bulletin, vol. 42 (1936), pp. 225-228.