(11)
$$KM \equiv 0 \pmod{2^{n-1} \cdot 9}.$$

Conversely (11) implies (9). Since (9) holds for the modulus $2^{n-2} \cdot 9M$, it follows similarly that (11) holds for the modulus $2^{n-2} \cdot 9$ with $M = 2^{n-4}M_1$. Hence (11) will be true for the given modulus if $M = 2^{n-3}M_1$. This supplies a proof by induction that (8) is a universal form for every $n \ge 4$.

If, in addition,* M is divisible by every prime p where 3 , we satisfy the necessary condition given by Dickson† for the form (8) to represent at least one set of <math>n primes. The proof of the sufficiency of this condition still remains a challenge to the ingenuity of number theorists.

NEW YORK, N. Y.

RINGS AS GROUPS WITH OPERATORS

C. J. EVERETT, JR.

1. Introduction. A module M (0, a, b, \cdots) is a commutative group, additively written. Every correspondence of M onto itself, or part of itself, such that $a \rightarrow a'$, $b \rightarrow b'$ implies $a + b \rightarrow a' + b'$ defines an endomorphism of M. An endomorphism may be regarded as an operator θ on M subject to the postulates (i) $\theta a = a'$ is uniquely defined as an element of M, (ii) $\theta(a+b) = \theta a + \theta b$, $(a, b \in M)$. In particular, there exist a null operator 0 (0M = 0) and a unit operator ϵ ($\epsilon a = a, a \epsilon M$). Designate by Ω_M the set of all such operators, $0, \epsilon, \alpha, \beta, \cdots$. It is well known that if operations of \oplus and \odot be defined in Ω_M by $(\theta + \eta)a = \theta a + \eta a$ and $(\theta \eta)a = \theta(\eta a)$, $(a \in M)$, Ω_M forms a ring with unit element ϵ (endomorphism ring of M).[‡] The equation $\theta = \eta$ means $\theta a = \eta a$ (all $a \in M$). A ring R(M) is called a ring over M in case M is the additive group of R(M). Correspondence of a set P onto a set Q (many-one) is written $P \sim Q$; if specifically one-one, $P \cong Q$. Corresponding operations in P, Q preserved under the map are indicated in parentheses; for example, $P \sim O(+)$. If a set T has the property that TP is defined in P, TQ in Q, and if, under a correspondence $P \sim Q, \ p \rightarrow q \text{ implies } tp \rightarrow tq \ (t \in T, \ p \in P, \ q \in Q), \text{ we write } P \sim Q \ (T)$ (T-operator correspondence). If R is a ring, the two-sided ideal N of elements z of R such that zr = 0 (all $r \in R$), is called the left annulling ideal of R.

274

^{*} For example, replace 6M in (8) by $2^{w}n!M$, $(w \ge n-3)$.

[†] Loc. cit., p. 156.

[‡] van der Waerden, Moderne Algebra, vol. 1, 2d edition, p. 146.