$$
\begin{equation*}
K M \equiv 0\left(\bmod 2^{n-1} \cdot 9\right) \tag{11}
\end{equation*}
$$

Conversely (11) implies (9). Since (9) holds for the modulus $2^{n-2} .9 M$, it follows similarly that (11) holds for the modulus $2^{n-2} .9$ with $M=2^{n-4} M_{1}$. Hence (11) will be true for the given modulus if $M=2^{n-3} M_{1}$. This supplies a proof by induction that (8) is a universal form for every $n \geqq 4$.

If, in addition,* M is divisible by every prime p where $3<p \leqq n$, we satisfy the necessary condition given by Dickson \dagger for the form (8) to represent at least one set of n primes. The proof of the sufficiency of this condition still remains a challenge to the ingenuity of number theorists.

New York, N. Y.

RINGS AS GROUPS WITH OPERATORS

C. J. EVERETT, JR.

1. Introduction. A module $M(0, a, b, \cdots)$ is a commutative group, additively written. Every correspondence of M onto itself, or part of itself, such that $a \rightarrow a^{\prime}, b \rightarrow b^{\prime}$ implies $a+b \rightarrow a^{\prime}+b^{\prime}$ defines an endomorphism of M. An endomorphism may be regarded as an operator θ on M subject to the postulates (i) $\theta a=a^{\prime}$ is uniquely defined as an element of M, (ii) $\theta(a+b)=\theta a+\theta b,(a, b \varepsilon M)$. In particular, there exist a null operator $0(0 M=0)$ and a unit operator $\epsilon(\epsilon a=a, a \varepsilon M)$. Designate by Ω_{M} the set of all such operators, $0, \epsilon, \alpha, \beta, \cdots$ It is well known that if operations of \oplus and \odot be defined in Ω_{M} by $(\theta+\eta) a=\theta a+\eta a$ and $(\theta \eta) a=\theta(\eta a),(a \varepsilon M), \Omega_{M}$ forms a ring with unit element ϵ (endomorphism ring of M) \ddagger The equation $\theta=\eta$ means $\theta a=\eta a$ (all $a \in M$). A ring $R(M)$ is called a ring over M in case M is the additive group of $R(M)$. Correspondence of a set P onto a set Q (many-one) is written $P \sim Q$; if specifically one-one, $P \cong Q$. Corresponding operations in P, Q preserved under the map are indicated in parentheses; for example, $P \sim Q(+)$. If a set T has the property that $T P$ is defined in $P, T Q$ in Q, and if, under a correspondence $P \sim Q, p \rightarrow q$ implies $t p \rightarrow t q(t \varepsilon T, p \varepsilon P, q \varepsilon Q)$, we write $P \sim Q(T)$ (T-operator correspondence). If R is a ring, the two-sided ideal N of elements z of R such that $z r=0$ (all $r \varepsilon R$), is called the left annulling ideal of R.
[^0]
[^0]: * For example, replace $6 M$ in (8) by $2^{w} n!M$, ($w \geqq n-3$).
 \dagger Loc. cit., p. 156.
 \ddagger van der Waerden, Moderne Algebra, vol. 1, 2d edition, p. 146.

