ON APPROXIMATELY CONTINUOUS FUNCTIONS

ISAIAH MAXIMOFF

In a very interesting paper Sur l'équation fonctionnelle $g(x) = f\phi(x)$, S. Braun* established a series of theorems on the functional equation

$$g(x) = f[\phi(x)],$$

where g(x) and f(y) are given functions, and $\phi(x)$ is a function sought for. In this note, we consider the case for which $\phi(x)$ is an approximately continuous function.† A function f(x) is said to be approximately continuous at x_0 if the density at x_0 of the set $E[f(x_0), \epsilon]$ of all points x such that $|f(x) - f(x_0)| < \epsilon$ is equal to 1, no matter what ϵ is.

Let f(x) be a finite function of class 1 in $[0, 1] = [0 \le x \le 1]$, and let $\{y_n\}$ be the sequence of all rational numbers y_n such that there are two points x_n' and x_n'' belonging to [0, 1] and satisfying the condition $f(x_n') < y_n < f(x_n'')$. Let $E_{y_n}(E^{y_n})$, $(n = 1, 2, 3, \cdots)$, denote the set of all points x such that $f(x) < y_n$ $(f(x) > y_n)$. If z is an irrational number, let E_z (E^z) denote the sum of all the sets $E_{y_n}(E^{y_n})$ such that $y_n < z$ $(y_n > z)$. We now prove the following theorem:

THEOREM 1. A necessary and sufficient condition that a finite function $\phi(x)$ be approximately continuous in [0, 1] is that there exist a system of perfect sets

$$(\mathfrak{P}): \qquad \mathfrak{P}_{y_r}^n, \quad \mathfrak{P}_n^{y_r}, \qquad r = 1, 2, 3, \cdots, n; n = 1, 2, 3, \cdots,$$

such that

- (i) $E_{y_r} = \lim_{n=\infty} \mathfrak{P}^n_{y_r}$, $E^{y_r} = \lim_{n=\infty} \mathfrak{P}^{y_r}_n$, $\mathfrak{P}^n_{y_r} \subset \mathfrak{P}^{n+1}_{y_r} \subset E_{y_r}$, $\mathfrak{P}^{y_r}_n \subset \mathfrak{P}^{y_r}_{n+1} \subset E_{y_r}$
- (ii) if $y_r < y_s$ and M is the greater of the integers r, s, every point of the set $\mathfrak{P}^n_{y_r}$ $(\mathfrak{P}^{y_s}_n)$ is a density point of the set $\mathfrak{P}^n_{y_s}$ $(\mathfrak{P}^{y_r}_n)$ for all $n \ge M$.

A point x of a set E will be called a density point in E if

$$\lim_{h=0} \left[\frac{1}{2h} \operatorname{meas} \left[(x - h, x + h)E \right] \right] = 1.$$

PROOF. Let x_0 be an arbitrary point in [0, 1], and let $f(x_0) = y_0$.

^{*} Fundamenta Mathematicae, vol. 28 (1937), pp. 294–302.

[†] A. Denjoy, Sur les fonctions dérivées sommables, Bulletin de la Société Mathématique de France, vol. 43 (1915), pp. 161-247, especially p. 165.