REPRESENTATION OF NUMBERS IN TERNARY QUADRATIC FORMS

E. ROSENTHALL

We employ integral quaternions $t=t_{0}+t_{1} i_{1}+t_{2} i_{2}+t_{3} i_{3}$, where the coordinates t_{i} range over rational integers, while the i_{1}, i_{2}, i_{3}, satisfy the multiplication table

$$
\begin{array}{cl}
i_{1}{ }^{2}=i_{2}{ }^{2}=-2, \quad i_{3}{ }^{2}=-3, & i_{2} i_{3}=2 i_{1}-i_{2}=\left(\overline{i_{3} i_{2}}\right) \\
i_{3} i_{1}=-i_{1}+2 i_{2}=\left(\overline{i_{1} i_{3}}, \quad,\right. & i_{1} i_{2}=-1+i_{3}=\left(\overline{i_{2} i_{1}}\right),
\end{array}
$$

and $\bar{t}=t_{0}-t_{1} i_{1}-t_{2} i_{2}-t_{3} i_{3}$ is the conjugate to t. The norm $N(t)$ of t is $t \bar{t}=\bar{t} t=t_{0}{ }^{2}+2 t_{1}{ }^{2}+2 t_{2}{ }^{2}+2 t_{1} t_{2}+3 t_{3}{ }^{2}$. The norm of a product of two quaternions equals the product of their norms, and $\bar{v} t=\bar{t} \bar{v}$ for any two quaternions. The associative law $r s \cdot t=r \cdot s t$ holds.

The quaternary quadratic $Q=t_{0}{ }^{2}+2 t_{1}{ }^{2}+2 t_{2}{ }^{2}+2 t_{1} t_{2}+3 t_{3}{ }^{2}$ has determinant 9 , the g.c.d. of the literal coefficients of the adjoint to Q is 3 , and the second concomitant of Q represents no residues 1 modulo 3, and as there is only one form of determinant 9 with these properties in Charve's table* of reduced quaternary quadratic forms, Q belongs to a genus of one class. Since Q represents 1 for two values of t_{0}, \cdots, t_{3}, we have, \dagger a proper quaternion being defined as one having coprime coordinates, the following theorem:

Theorem 1. A proper quaternion $v=v_{0}+v_{1} i_{1}+v_{2} i_{2}+v_{3} i_{3}$ whose norm is divisible by a positive integer m prime to 6 has exactly two rightdivisors (left-divisors) t and -t of norm m.

Every proper pure quaternion $s=s_{1} i_{1}+s_{2} i_{2}+s_{3} i_{3}$ of norm $k m^{2}$ is of form $\bar{t} a t$ where $N(a)=k$ and $N(t)=m$. For, $s=v t$ where $N(t)=m$ by Theorem $1 ; \bar{s}=-s=\bar{t} \bar{v}$, and \bar{t} is a left-divisor of s. Hence, since $N(v)=k m, \bar{t}$ is a left-divisor of the proper quaternion $v, v=\bar{t} a$. Hence $s=\bar{t} a t, N(a)=k$. Clearly a is pure since $\bar{t} \bar{a} t=-\bar{t} a t, \bar{a}=-a$.

Theorem 2. Consider the equation $24 n+1=x_{1}{ }^{2}+2 x_{2}{ }^{2}+2 x_{3}{ }^{2}-2 x_{2} x_{3}$. If $24 n+1=m^{2},(m>0)$, then all proper solutions are of type A if $m \equiv 1$ $(\bmod 4)$ but of type B if $m \equiv 3(\bmod 4)$, where

$$
A: x_{1} \equiv \pm 1(\bmod 12), \quad B: x_{1} \equiv \pm 5(\bmod 12)
$$

[^0]
[^0]: * L. Charve, Comptes Rendus de l'Académie des Sciences, vol. 96 (1883), p. 773.
 \dagger G. Pall, On the factorization of generalized quaternions, submitted to the Duke Mathematical Journal.

