A NOTE ON THE ASYMPTOTIC PROPERTIES OF ORTHOGONAL POLYNOMIALS*

R. WILSON

Let $\psi(u)$ be a function non-decreasing in the interval (0, 1) such that all the moments

$$c_k = \int_0^1 u^k d\psi(u), \qquad k = 0, 1, 2, \cdots,$$

exist, and let c_0 be positive. Then

(1)
$$f(z) \equiv \int_{0}^{1} \frac{d\psi(u)}{z - u} = \sum_{r=0}^{\infty} \frac{c_r}{z^{r+1}}$$

may be developed in a continued fraction of which the denominators of the successive approximants are the Tchebichef polynomials $Q_n(z)$, where

The determinants Δ_n are positive unless $\psi(u)$ has only a finite number ν of points of increase, in which case $\Delta_n = 0$ for $n > \nu$, and the continued fraction is terminating.

Shohat‡ has shown that for an extensive class of moment functions (1) we have

(2)
$$(\Delta_n/\Delta_{n+1})^{1/2} \sim 4^n$$
,

and that for all functions of this type satisfying (2) the recurrence

^{*} Presented to the Society, February 29, 1936.

[†] J. Shohat, Théorie Générale des Polynomes Orthogonaux de Tchebichef, Paris, 1934, p. 12.

[‡] J. Chokhatte (Shohat), Sur le développement de l'intégrale $\int_a^b [p(y)/(x-y)]dy$ en fraction continue et sur les polynomes de Tchebycheff, Rendiconti del Circolo Matematico di Palermo, vol. 47 (1923), p. 32.