JACKSON SUMMATION OF THE FABER DEVELOPMENT*

W. E. SEWELL

1. Introduction. The purpose of this note is to prove the following theorem:

THEOREM. Let C be an analytic Jordan curve in the z-plane, and let f(z) be analytic in C, continuous in \overline{C} , the closed limited set bounded by C, and let $\uparrow f^{(p)}(z)$, $(p \ge 0)$, satisfy a Lipschitz condition \ddagger of order α , $(0 < \alpha \le 1)$, on C. Then

(1)
$$\left|f(z) - \sum_{r=0}^{n} d_{nr} a_{r} P_{r}(z)\right| \leq \frac{M}{n^{p+\alpha}}, \qquad z \text{ in } \overline{C},$$

where M is a constant independent of n and z,

$$\sum_{\nu=0}^{n} a_{\nu} P_{\nu}(z)$$

is the sum of the first n+1 terms of the development of f(z) in the Faber§ polynomials belonging to C, and d_n , is the Jackson|| summation coefficient of order p.

In a previous paper the author¶ showed that under the above hypothesis

$$\left|f(z) - \sum_{0}^{n} a_{r} P_{r}(z)\right| \leq M(\log n/n^{p+\alpha}), \qquad z \text{ in } \overline{C}.$$

Later John Curtiss^{**} proved the existence of a sequence of polynomials $Q_n(z)$ of respective degrees n, $(n=1, 2, \cdots)$, such that

 $|f(z) - Q_n(z)| \leq M/n^{p+\alpha}.$

^{*} Presented to the Society, December 30, 1937.

 $f^{(p)}(z)$ denotes the *p*th derivative of f(z); $f^{(0)}(z) \equiv f(z)$.

f(z) satisfies a Lipschitz condition of order α on C if for z_1 and z_2 arbitrary points on C we have $|f(z_1)-f(z_2)| \leq L|z_1-z_2|^{\alpha}$, where L is a constant independent of z_1 and z_2 .

[§] G. Faber, Mathematische Annalen, vol. 57 (1903), pp. 389-408.

^{||} Dunham Jackson, Transactions of this Society, vol. 15 (1914), pp. 439-466; p. 463.

 $[\]P$ This Bulletin, vol. 41 (1935), pp. 111–117; this paper will be referred to hereafter as SI.

^{**} This Bulletin, vol. 42 (1936), pp. 873-878.