GENERALIZED REGULAR RINGS*

N. H. McCOY

1. Introduction. An element a of a ring \Re is said to be *regular* if there exists an element x of \Re such that axa = a. A ring \Re with unit element, every element of which is regular, is a *regular ring*.[†] In the present note we introduce rings somewhat more general than the regular rings and prove a few results which are, for the most part, analogous to known theorems about regular rings.[‡]

Let \Re denote a ring with unit element. If for every element a of \Re there exists a positive integer n such that a^n is regular, we shall say that \Re is π -regular. In general, the integer n will depend on a. If, however, there is a fixed integer m such that for all elements a of \Re , a^m is regular, we may say that \Re is *m*-regular. In this notation, a regular ring is 1-regular.

An important example of a π -regular ring is a special primary ring, that is, a commutative ring in which every element which is not nilpotent has an inverse.§ It will be seen below that in the study of π -regular rings the special primary rings play a role similar to that of the fields in the case of regular rings.

2. Theorems on π -regular rings. Let \Re be a π -regular ring, and \Im its center, that is, the set of all elements commutative with all elements of \Re . We now prove the first theorem:

THEOREM 1. The center of a π -regular ring is π -regular.

If $a \in \mathcal{B}$, there exists an *n* such that for some element *x* of \mathfrak{R} , $a^n x a^n = a^n$. Let $y = a^{2n} x^3$. Then, by a trivial modification of von Neumann's proof of the corresponding result for regular rings, \parallel it follows that *y* is in \mathfrak{B} and that $a^n y a^n = a^n$. Hence \mathfrak{B} is π -regular.

^{*} Presented to the Society, September 6, 1938.

[†] J. von Neumann, On regular rings, Proceedings of the National Academy of Sciences, vol. 22 (1936), pp. 707-713.

[‡] In addition to von Neumann, loc. cit., see also a paper by the present author entitled *Subrings of infinite direct sums*, Duke Mathematical Journal, vol. 4 (1938), pp. 486-494. Hereafter this paper will be referred to as S.

[§] See W. Krull, Algebraische Theorie der Ringe, Mathematische Annalen, vol. 88 (1922), pp. 80–122; R. Hölzer, Zur Theorie der primären Ringe, ibid., vol. 96 (1927), pp. 719–735. A ring is primary if every divisor of zero is nilpotent, that is, (0) is a primary ideal.

Loc. cit., p. 711.