ORTHOGONAL POLYNOMIALS WITH ORTHOGONAL DERIVATIVES*

M. S. WEBSTER

1. Introduction. Let $\left\{\phi_{n}(x) \equiv x^{n}+\cdots\right\}$ be a set of orthogonal polynomials satisfying the relations

$$
\begin{aligned}
\int_{a}^{b} p(x) \phi_{m}(x) \phi_{n}(x) d x=\int_{a}^{b} q(x) \phi_{m}{ }^{\prime}(x) \phi_{n}{ }^{\prime}(x) d x & =0, \\
m \neq n ; m, n & =0,1, \cdots,
\end{aligned}
$$

$$
\begin{align*}
& \alpha_{i} \equiv \int_{a}^{b} p(x) x^{i} d x, \quad \beta_{i} \equiv \int_{a}^{b} q(x) x^{i} d x, \quad i=0,1, \cdots, \tag{1}\\
& p(x) \geqq 0, \quad q(x) \geqq 0, \quad \alpha_{0}>0, \quad \beta_{0}>0 .
\end{align*}
$$

Lebesgue integrals are used and the interval $(a, b) \dagger$ may be finite or infinite.

We are concerned with the following assertion:
Theorem. If $\left\{\phi_{n}(x)\right\}$ and $\left\{\phi_{n}^{\prime}(x)\right\}$ are orthogonal systems of polynomials, then $\left\{\phi_{n}(x)\right\}$ may be reduced to the classical polynomials of Jacobi, Laguerre, or Hermite by means of a linear transformation on x.

This result was first proved by W. Hahn \ddagger who obtained a differential equation of the second order for $\phi_{n}(x)$. When (a, b) is finite, Krall§ derived the Jacobi polynomials by using the moments β_{i} to determine the weight function $q(x)$. The present paper extends his method to the case (a, b) infinite, thus obtaining the Laguerre and Hermite polynomials.
2. Weight function for $\left\{\phi_{n}{ }^{\prime}(x)\right\}$. Krall's proof shows that constants r, s, t (not all zero) may be determined so that

[^0]
[^0]: * Presented to the Society, November 28, 1936.
 \dagger There is no loss of generality in assuming the intervals of orthogonality for $\left\{\phi_{n}(x)\right\}$ and for $\left\{\phi_{n}^{\prime}(x)\right\}$ to be the same, since the definitions of $p(x), q(x)$ may always be extended to a common interval (a, b). More generally, $p(x) d x$ may be replaced by $d \psi_{1}(x) \equiv A p(x)+d T(x)$, where A is a constant, and $\int_{a}^{b} x^{i} d T(x)=0$, ($i=0,1, \cdots$); $q(x) d x$ may be replaced by $d \psi_{2}(x)$, where $\psi_{2}(x)$ is monotone nondecreasing.
 \ddagger W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634-638.
 § H. Krall, On derivatives of orthogonal polynomials, this Bulletin, vol. 42 (1936), pp. 423-428.

