EXPANSION OF FUNCTIONS IN SOLUTIONS OF FUNCTIONAL EQUATIONS*

LEONARD BRISTOW

1. Introduction. In analysis a number of functional equations have solutions of the form

$$
\begin{equation*}
x^{r} \sum_{s=0}^{\infty} \alpha_{s, r} x^{s} . \tag{1}
\end{equation*}
$$

Examples are (a) linear differential equations with a regular singular point at the origin, (b) the Volterra homogeneous integral equation with a regular singularity, (c) the linear q-difference equation, (d) the Fuchsian equation of infinite order. There are many others including mixed q-difference and differential equations.

Consider the equation

$$
\begin{equation*}
L(x, \lambda) \rightarrow y=0 \tag{2}
\end{equation*}
$$

where λ is a parameter and $L(x, \lambda)$ is an operator with the following property:

$$
\begin{equation*}
L(x, \lambda) \rightarrow x^{p}=x^{p} f(x, p, \lambda)=x^{p} \sum_{\mu=0}^{\infty} f_{\mu}(p, \lambda) x^{\mu} \tag{3}
\end{equation*}
$$

the series converging for $|x| \leqq N<r$ for all values of p, which may be a complex number. The purpose of this paper is to consider under what conditions a set of values $\left\{\lambda_{m}\right\},(m=0,1,2, \cdots)$, can be determined so that for $\lambda=\lambda_{m}$ there will exist a solution of the form

$$
\begin{align*}
y_{m+\sigma}(x) & =x^{m+\sigma} \sum_{s=0}^{\infty} \alpha_{s}^{(m+\sigma)} x^{s}=\sum_{s=0}^{\infty} \alpha_{s}^{(m+\sigma)} x^{m+\sigma+s} \tag{4}\\
& =x^{m+\sigma}\left\{\alpha_{0}^{(m+\sigma)} h_{m}(x)\right\}
\end{align*}
$$

such that an arbitrary function $x^{\sigma} f(x), f(x)$ being analytic for $|x|<\rho$, can be expanded in a series

$$
\begin{equation*}
x^{\sigma} f(x)=\sum_{m=0}^{\infty} a_{m} y_{m+\sigma}(x) \tag{5}
\end{equation*}
$$

which converges and represents the function in some region. For the

[^0]
[^0]: * Presented to the Society, October 29, 1938.

