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EXPANSION OF FUNCTIONS IN SOLUTIONS OF
FUNCTIONAL EQUATIONS*

LEONARD BRISTOW

1. Introduction. In analysis a number of functional equations have
solutions of the form
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Examples are (a) linear differential equations with a regular singular
point at the origin, (b) the Volterra homogeneous integral equation
with a regular singularity, (c) the linear ¢-difference equation, (d) the
Fuchsian equation of infinite order. There are many others including
mixed g¢-difference and differential equations.

Consider the equation
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where \ is a parameter and L(x, \) is an operator with the following
property:
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the series converging for | x| < N <r for all values of p, which may be
a complex number. The purpose of this paper is to consider under
what conditions a set of values {)\m}, (m=0,1,2,---), can be de-
termined so that for A =M\, there will exist a solution of the form
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such that an arbitrary function x°f(x), f(x) being analytic for Ix] <p,
can be expanded in a series
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which converges and represents the function in some region. For the
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